【题目】设二次函数,其中常数.
(1)求在区间上的最小值(用表示);
(2)解不等式;
(3)若对任意恒成立,试求实数的取值范围.
【答案】(1);(2)见解析;(3).
【解析】
(1)就二次函数的对称轴与区间的位置关系进行分类讨论,分析二次函数在区间上的单调性,从而可得出函数在区间上的最小值;
(2)分、两种情况解不等式,即可得出各种情况下不等式的解集;
(3)由(1)中的结论,将问题转化为函数在区间上的最小值,然后解出该不等式可得出实数的取值范围.
(1)二次函数对称轴为直线,且图象开口向上.
若,即时,函数在区间上单调递增,
则;
若,即时,函数在区间上单调递减,在区间上单调递增,则;
若,即时,函数在区间上单调递减,
则.
因此,;
(2).
当时,即当时,则不等式的解集为;
当时,即当或时,解不等式,即.
解得或.
此时,不等式的解集为;
(3)由题意知,函数在区间上的最小值.
由(1)知,当时,则,解得,此时;
当时,则,解得,此时;
当时,则,解得,此时.
综上所述,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①函数,的图象与直线可能有两个不同的交点;
②函数与函数是相等函数;
③对于指数函数与幂函数,总存在,当时,有成立;
④已知是方程的根,是方程的根,则.
其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列说法:
①函数y=2x与函数y=log2x互为反函数;
②若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;
③若,则f(x)=x2-2;
④函数y=log2(1-x)的单调减区间是(-∞,1);
其中所有正确的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的椭圆C的一个顶点为,焦点在x轴上,右焦点到直线的距离为.
求椭圆的标准方程;
若直线l:交椭圆C于M,N两点,设点N关于x轴的对称点为点与点M不重合,且直线与x轴的交于点P,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=x2+(a+1)x+a2(a∈R),若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和.
(1)求g(x)和h(x)的解析式;
(2)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求f(1)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆C:.
若圆C的切线l在x轴和y轴上的截距相等,且截距不为零,求切线l的方程;
已知点为直线上一点,由点P向圆C引一条切线,切点为M,若,求点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数,满足,.
(1)求函数的解析式;
(2)若关于的不等式在上有解,求实数的取值范围;
(3)若函数的两个零点分别在区间和内,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a-.
(1)求f(0);
(2)探究f(x)的单调性,并证明你的结论;
(3)若f(x)为奇函数,求满足f(ax)<f(2)的x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com