【题目】已知函数,证明:
(1)在区间存在唯一极大值点;
(2)有且仅有2个零点.
【答案】(1)证明见解析(2)证明见解析
【解析】
(1)设,对求导可知在上单调递减,利用零点存在性定理可得在上有唯一的零点,进而求证即可;
(2)利用导函数分别讨论,,的单调性,判断函数图象的性质,进而求证即可.
证明:(1)设,
当时,,
所以在上单调递减,
又因为,,
所以在上有唯一的零点,
即函数在上存在唯一零点,
当时,,在上单调递增;
当时,,在上单调递减,
所以在上存在唯一的极大值点
(2)①由(1)知:在上存在唯一的极大值点,
所以,
又因为,
所以在上恰有一个零点,
又因为,
所以在上也恰有一个零点,
②当时,,,
设,,
所以在上单调递减,所以,
所以当时,恒成立,
所以在上没有零点,
③当时,,
设,,
所以在上单调递减,
所以,
所以当时,恒成立,
所以在上没有零点,
综上,有且仅有两个零点.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,过点的直线与椭圆交于两点,延长交椭圆于点,的周长为8.
(1)求的离心率及方程;
(2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且,.
(1)若数列是等差数列,且,求实数的值;
(2)若数列满足,且,求证:数列是等差数列;
(3)设数列是等比数列,试探究当正实数满足什么条件时,数列具有如下性质:对于任意的,都存在使得,写出你的探求过程,并求出满足条件的正实数的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年5月20日以来,广东自西北到东南出现了一次明显降雨.为了对某地的降雨情况进行统计,气象部门对当地20日~28日9天记录了其中100小时的降雨情况,得到每小时降雨情况的频率分布直方图如下:
若根据往年防汛经验,每小时降雨量在时,要保持二级警戒,每小时降雨量在时,要保持一级警戒.
(1)若从记录的这100小时中按照警戒级别采用分层抽样的方法抽取10小时进行深度分析.
①求一级警戒和二级警戒各抽取多少小时;
②若从这10个小时中任选2个小时,则这2个小时中恰好有1小时属于一级警戒的概率.(2)若以每组的中点代表该组数据值,求这100小时内的平均降雨量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )
A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件
B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高
C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致
D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为,椭圆上动点到点的最远距离和最近距离分别为和.
(1)求椭圆的方程;
(2)设分别为椭圆的左、右顶点,过点且斜率为的直线与椭圆交于、两点,若,为坐标原点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,在直三棱柱中,平面侧面A1ABB1.
(Ⅰ)求证:;
(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θ与φ的大小关系,并予以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年全国数学奥赛试行改革:在高二一年中举行5次全区竞赛,学生如果其中2次成绩达全区前20名即可进入省队培训,不用参加其余的竞赛,而每个学生最多也只能参加5次竞赛.规定:若前4次竞赛成绩都没有达全区前20名,则第5次不能参加竞赛.假设某学生每次成绩达全区前20名的概率都是,每次竞赛成绩达全区前20名与否互相独立.
(1)求该学生进入省队的概率.
(2)如果该学生进入省队或参加完5次竞赛就结束,记该学生参加竞赛的次数为,求的分布列及的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形所在的平面和平面互相垂直,等腰梯形中,,,,,,分别为,的中点,为底面的重心.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com