精英家教网 > 高中数学 > 题目详情
15.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为$\left\{\begin{array}{l}{x=tsinφ}\\{y=1+tcosφ}\end{array}\right.$(t为参数,0<φ<π,曲线C的极坐标方程为ρcos2θ=4sinθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当φ变化时,求|AB|的最小值.

分析 (1)把直线参数方程中的参数t消去,即可得到直线l的普通方程,把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程化直角坐标方程;
(2)将直线的参数方程代入曲线C的直角坐标方程,利用根与系数的关系结合t的几何意义求得|AB|的最小值.

解答 解:(1)由$\left\{\begin{array}{l}{x=tsinφ}\\{y=1+tcosφ}\end{array}\right.$,消去t得l的普通方程xcosφ-ysinφ+sinφ=0,
由ρsin2θ=4cosθ,得(ρsinθ)2=4ρcosθ,
把x=ρcosθ,y=ρsinθ代入上式,得y2=4x,
∴曲线C的直角坐标方程为x2=4y;
(2)将直线l的参数方程代入y2=4x,得t2sin2φ-4tcosφ-4=0,
设A、B两点对应的参数分别为t1,t2
则${t}_{1}+{t}_{2}=\frac{4cosφ}{si{n}^{2}φ}$,${t}_{1}{t}_{2}=\frac{-4}{si{n}^{2}φ}$.
∴|AB|=$|{t}_{1}-{t}_{2}|=\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\frac{4}{si{n}^{2}φ}$.
当φ=$\frac{π}{2}$时,即sin2φ=1,|AB|的最小值为4.

点评 本题考查参数方程化普通方程,考查直线参数方程中参数几何意义的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(x,$\sqrt{3}$),$\overrightarrow{b}$=(x,-$\sqrt{3}$),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=|x2-k|的图象与函数g(x)=x-3的图象至多一个公共点,则实数k的取值范围是(  )
A.(-∞,3]B.[9,+∞)C.(-∞,9]D.(-∞,9)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列结论不正确的是(  )
A.若y=3,则y'=0B.若$y=\frac{1}{{\sqrt{x}}}$,则$y'=-\frac{{\sqrt{x}}}{2}$C.若$y=\sqrt{x}$,则$y'=\frac{1}{{2\sqrt{x}}}$D.若y=x,则y'=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2cos2x+sin(2x-$\frac{π}{6}$)
(1)求函数f(x)的单调增区间;最大值,以及取得最大值时x的取值集合;
(2)已知△ABC中,角A、B、C的对边分别为a,b,c,若f(A)=$\frac{3}{2}$,b+c=2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知tanα=-$\frac{3}{4}$,tan(π-β)=$\frac{1}{2}$,则tan(α-β)的值为(  )
A.-$\frac{2}{11}$B.$\frac{2}{11}$C.$\frac{11}{2}$D.-$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足$\left\{\begin{array}{l}{{x}^{2}-x-6≤0}\\{{x}^{2}+2x-8>0}\end{array}\right.$
(Ⅰ)若a=1,p∧q为真,求实数x的取值范围;
(Ⅱ)若¬q是¬p的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知圆F1的半径为4,|F1F2|=2,P是圆F1上的一个动点,F2P的中垂线l交F1P于点Q,以直线F1F2为x轴,F1F2的中垂线为y轴建立平面直角坐标系.
(1)求点Q的轨迹E的方程;
(2)设过点F2的动直线m与轨迹E交于A,B两点,在x轴上是否存在定点R,使得$\overrightarrow{RA}$$•\overrightarrow{RB}$是定值?若存在,求出点R的坐标和定值;若不存在,请说明埋由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知中心在坐标原点的椭圆C,F1,F2 分别为椭圆的左、右焦点,长轴长为6,离心率为$\frac{{\sqrt{5}}}{3}$
(1)求椭圆C 的标准方程;
(2)已知点P在椭圆C 上,且PF1=4,求点P到右准线的距离.

查看答案和解析>>

同步练习册答案