精英家教网 > 高中数学 > 题目详情

【题目】数学是研究数量、结构、变化、空间以及信息等概念的一门科学.在人类历史发展和社会生活中,数学发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具.

1)为调查大学生喜欢数学命题是否与性别有关,随机选取名大学生进行问卷调查,当被调查者问卷评分不低于分则认为其喜欢数学命题,当评分低于分则认为其不喜欢数学命题,问卷评分的茎叶图如下:

依据上述数据制成如下列联表:

请问是否有的把握认为大学生是否喜欢数学命题与性别有关?

参考公式及数据:.

2)在某次命题大赛中,同学要进行轮命题,其在每轮命题成功的概率均为,各轮命题相互独立,若该同学在轮命题中恰有次成功的概率为,记该同学在轮命题中的成功次数为,求.

【答案】1)没有的把握认为大学生是否喜欢数学命题与性别有关(2

【解析】

1)由茎叶图可得列联表,再利用所给的公式计算并判断;

2)根据已知条件知,根据二项分布求得,进而可求得.

1)由题知:

所以没有的把握认为大学生是否喜欢数学命题与性别有关;

2)由题知:

依据二项分布知:,所以

单调递减;

单调递增;

因此,所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的焦点分别为,直线轴于点,且

(1)求椭圆的方程;

(2)过 分别作互相垂直的两直线,与椭圆分别交于D、EM、N四点, 求四边形面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.若两条直线与同一条直线所成的角相等,则这两条直线平行

B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行

C.若一条直线分别平行于两个相交平面,则一定平行它们的交线

D.若两个平面都平行于同一条直线,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是自然对数的底数)

(1)若,当时,试比较2的大小;

(2)若函数有两个极值点,求的取值范围,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对定义在[01]上,并且同时满足以下两个条件的函数fx)称为G函数.

对任意的x∈[01],总有fx≥0

x1≥0x2≥0x1+x2≤1时,总有fx1+x2≥fx1+fx2)成立.已知函数gx=x2hx=2xb是定义在[01]上的函数.

1)试问函数gx)是否为G函数?并说明理由;

2)若函数hx)是G函数,求实数b组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).M是曲线上的动点,将线段OM绕O点顺时针旋转得到线段ON,设点N的轨迹为曲线.以坐标原点O为极点,轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)在(1)的条件下,若射线与曲线分别交于A, B两点(除极点外),且有定点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】商家通常依据乐观系数准则确定商品销售价格,及根据商品的最低销售限价a,最高销售限价bba)以及常数x0x1)确定实际销售价格c=a+xb﹣a),这里,x被称为乐观系数.

经验表明,最佳乐观系数x恰好使得(c﹣a)是(b﹣c)和(b﹣a)的等比中项,据此可得,最佳乐观系数x的值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,,若,当阳马体积最大时,则堑堵的外接球的体积为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线轴,轴分别相交于点BC,经过BC两点的抛物线轴的另一交点为A,顶点为P,且对称轴为直线.

1)求该抛物线的函数表达式;

2)连结AC.请问在轴上是否存在点Q,使得以点PBQ为顶点的三角形与ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案