精英家教网 > 高中数学 > 题目详情
15.函数f(x)=x5+x3+x的图象(  )
A.关于y轴对称B.关于直线y=x对称
C.关于坐标原点对称D.关于直线y=-x对称

分析 利用函数奇偶性的定义判断函数的奇偶性即可.

解答 解:∵f(x)=x5+x3+x,
∴f(-x)=-x5-x3-x=-(x5+x3+x)=-f(x),
∴函数f(x)为奇函数,
即函数f(x)=x5+x3+x的图象关于原点对称.
故选:C.

点评 本题主要考查函数奇偶性的应用,要求熟练掌握函数奇偶性的图象关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.正方体ABCD-A1B1C1D1中:
(1)求二面角C-AD1-D的余弦值;
(2)求BB1与平面ACD1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)=\left\{\begin{array}{l}{a}^{x},x≥0\\(3-a)x+\frac{a}{2},x<0\end{array}\right.$为区间(-∞,+∞)上的单调增函数,则实数a的取值范围为(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(1,$\frac{\sqrt{2}}{2}$),离心率e=$\frac{\sqrt{2}}{2}$,F1、F2为椭圆的左、右焦点.
(1)求椭圆C的标准方程;
(2)设圆T的圆心T(0,t)在x轴上方,且圆T经过椭圆C两焦点.点P为椭圆C上的一动点,PQ与圆T相切于点Q.
①当Q(-$\frac{1}{2}$,-$\frac{1}{2}$)时,求直线PQ的方程;
②当PQ取得最大值为$\frac{\sqrt{5}}{2}$时,求圆T方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合M={x|x∈Z且-10≤x≤-3},N={x|x∈Z且|x|≤5 },则M∪N中元素的个数为(  )
A.11B.10C.16D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线l1:4x-3y+6=0和直线l2:x=0,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则这个几何体外接球的表面积为(  )
A.20πB.40πC.50πD.60π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数$f(x)=\left\{\begin{array}{l}sinx+\frac{3}{2},x≥0\\{x^2}+a,x<0\end{array}\right.$(其中a∈R)的值域为$[\frac{1}{2},+∞)$,则a的取值范围是(  )
A.$[\frac{3}{2},+∞)$B.$[\frac{1}{2},\frac{3}{2}]$C.$[\frac{1}{2},\frac{5}{2}]$D.$[\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知p:x2-8x-20>0,q:(x-1-m)(x-1+m)>0 (m>0),若p是q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案