精英家教网 > 高中数学 > 题目详情

【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下列联表:

(1)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为,试求随机变量的分布列和数学期望;

(2)若在犯错误的概率不超过的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.附:独立性检验统计量,其中.

独立性检验临界值表:

【答案】(1)见解析(2)

【解析】试题分析:(1)按分层抽样,8人中“有明显拖延症”6人,“无有明显拖延症” 人,随机变量的可能取值为0,1,2.按超几何分布可求得分布列。(2)由题意可算得 ,所以

试题解析:(Ⅰ)女生中从“有明显拖延症”里抽人,“无有明显拖延症”里抽人.

则随机变量的可能取值为0,1,2.

的分布列为:

0

1

2

.

(Ⅱ)由题设条件得

由临界值表可知: ,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,分别根据下列条件解三角形,其中有两个解的是(
A.a=7,b=14,A=30°
B.a=20,b=26,A=150°
C.a=30,b=40,A=30°
D.a=72,b=60,A=135°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,则下列结论正确的是(
A.f(x)为偶函数
B.f(x)为增函数
C.f(x)为周期函数
D.f(x)值域为(﹣1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在明朝程大位《算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌.“远看巍巍塔七层,红光点点倍加倍;共灯三百八十一,请问尖头几盏灯?”本题是说,“远处有一座雄伟的佛塔,塔上挂满了许多红灯,下一层灯数是上一层灯数的2倍,全塔共有381盏,试问顶层有几盏灯?”;同样在这本书中还有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”如果译成白话文,其意思是:“有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完.”现按照分层抽样的办法从这100名和尚中选取12人派去布置第一个问题中最顶层的灯,那么每盏灯需要分派的大小和尚数各为(A)1人,3人 (B)2人,4人 (C)3人,6人 (D)3人,9人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新生儿Apgar评分,即阿氏评分是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分,满10分者为正常新生儿,评分7分以下的新生儿考虑患有轻度窒息,评分在4分以下考虑患有重度窒息,大部分新生儿的评分多在7-10分之间,某市级医院妇产科对1月份出生的新生儿随机抽取了16名,以下表格记录了他们的评分情况.

(1)现从16名新生儿中随机抽取3名,求至多有1名评分不低于9分的概率;

(2)以这16名新生儿数据来估计本年度的总体数据,若从本市本年度新生儿任选3名,记表示抽到评分不低于9分的新生儿数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:

喜欢

不喜欢

合计

大于40岁

20

5

25

20岁至40岁

10

20

30

合计

30

25

55

(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?

(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设fn(x)=(3n﹣1)x2﹣x(n∈N*),An={x|fn(x)<0}
(1)定义An={x|x1<x<x2}的长度为x2﹣x1 , 求An的长度;
(2)把An的长度记作数列{an},令bn=anan+1
1°求数列{bn}的前n项和Sn
2°是否存在正整数m,n(1<m<n),使得S1 , Sm , Sn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

(1)令,求的单调区间;

(2)已知处取得极大值.求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 用总长14.8米的钢条制作一个长方体容器的框架,如果所制容器底面一边的长比另一边的长多0.5米,那么高为多少时容器的容积最大?最大容积是多少?

查看答案和解析>>

同步练习册答案