精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$,x∉R.
(1)求函数f(x)的最小正周期,最大值,最小值;
(2)求函数f(x)的单调递增区间.

分析 (1)利用两角和与差的三角函数化简函数的表达式,然后求解周期以及最值.
(2)利用正弦函数的单调区间求解函数的单调区间即可.

解答 解:(1)函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x-1=sin(2x-$\frac{π}{6}$)-1,
函数的周期为:T=$\frac{2π}{2}=π$,
最大值为:0,最小值为-2.
(2)由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
可得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
函数f(x)的单调递增区间:[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.

点评 本题考查两角和与差的三角函数,正弦函数的单调性以及三角函数的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知命题p:?x∈R,x2-5x+6>0,命题q:?α、β∈R,使sin(α+β)=sinα+sinβ,则下列命题为真命题的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在下列条件中,可判断平面α与β平行的是(  )
A.α⊥γ,且β⊥γ
B.m,n是两条异面直线,且m∥β,n∥β,m∥α,n∥α
C.m,n是α内的两条直线,且m∥β,n∥β
D.α内存在不共线的三点到β的距离相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.要建造一个容量为1200m3,深为6m的长方体无盖蓄水池,池壁的造价为95元/m2,池底的造价为135元/m2,求当水池的长在什么范围时,才能使水池的总造价不超过61200元(规定长大于等于宽).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足${\overrightarrow{a}}^{2}$=1,${\overrightarrow{b}}^{2}$=2,且$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.60°C.45°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{3}$个单位,所得曲线的一部分如图所示,f(x)的周期为π,φ的值为-$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)={log_{\frac{1}{2}}}cos(2x-\frac{2}{3}π)$的单调增区间为(  )
A.$({kπ+\frac{π}{3},kπ+\frac{7π}{12}})(k∈Z)$B.$({kπ-\frac{π}{6},kπ+\frac{π}{3}})(k∈Z)$
C.$({kπ+\frac{π}{12},kπ+\frac{π}{3}})(k∈Z)$D.$({kπ+\frac{π}{3},kπ+\frac{5π}{6}})(k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线y=x+k与曲线x=$\sqrt{1-{y}^{2}}$恰有一个公共点,则k的取值范围是(  )
A.k=-$\sqrt{2}$或-1<k≤1B.k≥$\sqrt{2}$或k≤-$\sqrt{2}$C.-$\sqrt{2}$<k<$\sqrt{2}$D.k=±$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某游艺场每天的盈利额y元与售出的门票数x张之间的关系如图所示,试问盈利额为750元时,当天售出的门票数为多少?

查看答案和解析>>

同步练习册答案