精英家教网 > 高中数学 > 题目详情
(2012•泉州模拟)某厂为了检查一条流水线的生产情况,随机抽取该流水线上40件产品,逐一称出它们的重量(单位:克),经数据处理后作出了如图所示的样本频率分布直方图.那么,根据频率分布直方图,样本中重量超过505克的产品数量应为
12
12
件.
分析:由题意,计算出重量超过505克的两个小矩形的面积,求出它们的面积和,即得重量超过505克的产品的频率,再根据频率的定义,可算出重量超过505克的产品数量.
解答:解:由直方图,得重量超过505克的小矩形有两个,
分别为最右边的两个小矩形,可得它们的面积分别为:
S1=5×0.05=0.25,S2=5×0.01=0.05
∴重量超过505克的产品的频率为S1+S2=0.3
因此,可得重量超过505克的产品数量n=0.3×40=12件
故答案为:12
点评:本题在频率分布直方图中,求满足条件的产品的频数.着重考查了频率分布直方图的理解和用样本估计总体等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
(Ⅰ)请写出fn(x)的表达式(不需证明);
(Ⅱ)设fn(x)的极小值点为Pn(xn,yn),求yn
(Ⅲ)设gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值为a,fn(x)的最小值为b,试求a-b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)下列函数中,既是偶函数,且在区间(0,+∞)内是单调递增的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知集合A={1,2,3},B={x|x2-x-2=0,x∈R},则A∩B为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)设函数f(x)=ax2+lnx.
(Ⅰ)当a=-1时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-
12
的下方,求a的取值范围;
(Ⅲ)记f′(x)为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1,x2,x3…xk,使得f′(x1)+f'(x2)+f′(x3)+…+f′(xk)≥2012成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)设函数y=f(x)的定义域为D,若对于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究并利用函数f(x)=x3-3x2-sin(πx)的对称中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=(  )

查看答案和解析>>

同步练习册答案