精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=|x+1|-|x-a|
(Ⅰ)当a=1时,求不等式f(x)<1的解集;
(Ⅱ)若f(x)的最大值为6,求a的值.

分析 (Ⅰ)当a=1时,化简函数的解析式,去掉绝对值符号,即可求不等式f(x)<1的解集;
(Ⅱ)利用绝对值三角不等式推出f(x)的最大值为6的方程,即可求a的值.

解答 解:(Ⅰ)当a=1时,f(x)=|x+1|-|x-1|
当x<-1时,f(x)=-x-1+x-1=-2<1恒成立
当-1≤x≤1,f(x)=x+1+x-1=2x<1,$x<\frac{1}{2}$
当x>1,f(x)=x+1-x+1=2<1,无解
不等式f(x)=|x+1|-|x-1|<1的解集是$\left\{{x|x<\frac{1}{2}}\right\}$…(5分)
(Ⅱ)f(x)=|x+1|-|x-a|≤|(x+1)-(x-a)|=|1+a|
则|1+a|=6,所以a=5或a=-7…(10分)

点评 本题考查函数的最值的求法,绝对值不等式的解法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图所示,在直角坐标系内,射线OT落在30°角的终边上,任作一条射线OA,则射线OA落在∠yOT内的概率为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.
(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;
(Ⅲ)(理科)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,设这两人中两科成绩均为A的人数为ξ,求ξ的分布列及数学期望.
(文科)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.分别根据下列两个实际背景
(1)求函数f(x)的解析式;
(2)画出函数f(x) 的图象;
(3)求函数f(x)的值域.
背景1:在国内投递外埠平信,每封信不超过20g付邮资80分,超过20g不超过40g付邮资160分,超过40g不超过60g付邮资240,依此类推,每xg(0<x≤100)的信应付邮资f(x)(单位:分).
背景2:如图所示,在边长为2的正方形ABCD的边上有一个动点P,从点A出发沿折线.ABCD移动一周后,回到A点.设点A移动的路程为x,△PAC的面积为f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U=R,集合$A=\{x|y=\sqrt{\frac{4-x}{x-2}}\},B=\{x|{x^2}-7x+12≤0\},则A∩$(∁UB)=(  )
A.(2,3)B.(2,4)C.(3,4]D.(2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.抛物线y2=2px上横坐标为4的点到此抛物线焦点的距离为9,则该抛物线的焦点到准线的距离为(  )
A.4B.9C.10D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,点O为坐标原点,点A,B分别为椭圆的右顶点和上顶点,点M在线段AB上且满足|BM|=2|MA|,直线OM的斜率为$\frac{{\sqrt{5}}}{10}$.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设点C为椭圆的下顶点,N为线段AC的中点,证明:MN⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知y=x2+2ax+1
(1)若当x∈[-1,2]时,y的最大值为4,求a.
(2)若当a∈[-1,2]时,y的最大值为4,求x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}为公差不为零的等差数列,a1=1,且a1,a3,a21成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=3n-1,求数列{anbn}的前n项和Sn

查看答案和解析>>

同步练习册答案