精英家教网 > 高中数学 > 题目详情

【题目】如表提供了甲产品的产量x(吨)与利润y(万元)的几组对照数据.

x

3

4

5

6

y

2.5

3

4

4.5


(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 = x+
(2)计算相关指数R2的值,并判断线性模型拟合的效果.
参考公式: = = ,R2=1﹣

【答案】
(1)解:∵由题意知 = ×(3+4+5+6)=4.5, = ×(2.5+3+4+4.5)=0.7,

∴b= =0.7,

a=3.5﹣4.5×0.7=0.35,

∴线性回归方程是y=0.7x+0.35


(2)解:相关指数R2=1﹣ ≈1﹣0.0013=0.9987,

∴解释变量对预报变量的贡献率为99.87%


【解析】(Ⅰ)首先做出x,y的平均数,利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果;(Ⅱ)直接根据相关指数公式进行求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线平面,直线平面,给出下列命题:

,则;   ,则

,则;   ,则.

其中正确命题的序号是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,
且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1

(1)求证:AB∥平面PCD;
(2)求证:BC⊥平面PAC;
(3)若M是PC的中点,求三棱锥C﹣MAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A={x|kx2﹣2x﹣1=0}只有一个元素,则实数k的取值集合为(
A.{﹣1}
B.{0}
C.{﹣1,0}
D.(﹣∞,﹣1]∪{0}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有f[f(x)﹣ ]=2,则f(2016)=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有这样一则问题:“今有良马与弩马发长安,至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马.”则现有如下说法:

①弩马第九日走了九十三里路;

②良马前五日共走了一千零九十五里路;

③良马和弩马相遇时,良马走了二十一日.

则以上说法错误的个数是( )个

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=log (﹣3+4x﹣x2)的单调递增区间是(
A.(﹣∞,2)
B.(2,+∞)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设[x]表示不超过x的最大整数,如[1]=1,[0.5]=0,已知函数f(x)= ﹣k(x>0),若方程f(x)=0有且仅有3个实根,则实数k的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数g(x)=mx2﹣2mx+n+1(m>0)在区间[0,3]上有最大值4,最小值0.
(1)求函数g(x)的解析式;
(2)设f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]时恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案