精英家教网 > 高中数学 > 题目详情
有如下结论:“圆上一点处的切线方程为”,类比也有结论:“椭圆处的切线方程为”,过椭圆C:的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.
(1)求证:直线AB恒过一定点;
(2)当点M的纵坐标为1时,求△ABM的面积.
(1)略(2)

(1)设M
…2分
∵点M在MA上∴,同理可得②       …3分
由①②知AB的方程为…………4分
易知右焦点F()满足③式,      …5分
故AB恒过椭圆C的右焦点F() …6分
(2)把AB的方程 …7分
               …8分
又M到AB的距离            …10分
∴△ABM的面积……………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分11分)已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点
(1)求抛物线的标准方程;
(2)若的三个顶点在抛物线上,且点的横坐标为1,过点分别作抛物线的切线,两切线相交于点,直线轴交于点,当直线的斜率在上变化时,直线斜率是否存在最大值,若存在,求其最大值和直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径百公里)的中心为一个焦点的椭圆. 如图,已知探测器的近火星点(轨道上离火星表面最近的点)到火星表面的距离为百公里,远火星点(轨道上离火星表面最远的点)到火星表面的距离为800百公里. 假定探测器由近火星点第一次逆时针运行到与轨道中心的距离为百公里时进行变轨,其中分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到1百公里).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)在平面直角坐标系xOy中,已知三点A(-1,0),B(1,0),,以A、B为焦点的椭圆经过点C。
(I)求椭圆的方程;
(II)设点D(0,1),是否存在不平行于x轴的直线与椭圆交于不同两点M、N,使
?若存在,求出直线斜率的取值范围;若不存在,请说明理由:
(III)对于y轴上的点P(0,n),存在不平行于x轴的直线与椭圆交于不同两点M、N,使,试求实数n的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的左、右顶点分别为曲线是以椭圆中心为顶点,为焦点的抛物线.
(Ⅰ)求曲线的方程;
(Ⅱ)直线与曲线交于不同的两点时,求直线的倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在中,边上的高分别为,则以为焦点,且过的椭圆与双曲线的离心率的倒数和为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线(a>0,b>0)的左、右焦点为F1(-c,0),F2(c,0),若双曲线上存在点P,使,则双曲线的离心率e的取值范围(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与椭圆右焦点重合,则的值为(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与抛物线所围成图形的面积为        

查看答案和解析>>

同步练习册答案