精英家教网 > 高中数学 > 题目详情
10.已知数列{an}的前n项和为Sn,且满足Sn+2=2an,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{lo{g}_{2}{a}_{n}}$,cn=$\frac{\sqrt{{b}_{n}{b}_{n+1}}}{\sqrt{n+1}+\sqrt{n}}$,求数列{cn}的前n项和为Tn

分析 (1)由n=1时,a1=2,当n≥2时,an=Sn-Sn,则$\frac{{a}_{n}}{{a}_{n-1}}$=2,即可求得数列{an}的通项公式;
(2)bn=$\frac{1}{lo{g}_{2}{a}_{n}}$=$\frac{1}{n}$,cn=$\frac{\sqrt{{b}_{n}{b}_{n+1}}}{\sqrt{n+1}+\sqrt{n}}$=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,采用“裂项法”即可求得数列{cn}的前n项和为Tn

解答 解:(1)由Sn+2=2an,n∈N*
当n=1时,a1+2=2a1,a1=2,(1分)
当n≥2时,Sn-1+2=2an-1
an=Sn-Sn=(2an-2)-(2an-1-2),
∴$\frac{{a}_{n}}{{a}_{n-1}}$=2,(4分)
∴{an}是以2为首项,2为公比的等比数列,
数列{an}的通项公式为an=2n,n∈N*;(6分)
(2)bn=$\frac{1}{lo{g}_{2}{a}_{n}}$=$\frac{1}{n}$,(7分)
cn=$\frac{\sqrt{{b}_{n}{b}_{n+1}}}{\sqrt{n+1}+\sqrt{n}}$=$\frac{\sqrt{\frac{1}{n(n+1)}}}{\sqrt{n+1}+\sqrt{n}}$=$\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}$=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,(10分)
数列{cn}的前n项和为Tn,Tn=c1+c2+…+cn=1-$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{2}}$-$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$=1-$\frac{1}{\sqrt{n+1}}$,
 数列{cn}的前n项和为Tn=1-$\frac{1}{\sqrt{n+1}}$.(12分)

点评 本题考查等比数列的通项公式,采用“裂项法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知一个圆经过A(3,3),B(2,4)两点,且圆心C在直线$y=\frac{1}{2}x+2$上,
(1)求圆C的标准方程;
(2)若直线y=kx+2与圆C有两个不同的交点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三点P1(1,1,0),P2(0,1,1)和P3(1,0,1),O是坐标原点,则|$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$|=(  )
A.2B.4C.$2\sqrt{3}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知二次函数f(x)=x2+mx+n.
(1)若f(x)是偶函数且最小值为1,求f(x)的解析式;
(2)在(1)的前提下,函数$g(x)=\frac{6x}{f(x)}$,解关于x的不等式g(2x)>2x
(3)函数h(x)=|f(x)|,若x∈[-1,1]时h(x)的最大值为M,且M≥k对任意实数m,n恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.41,摸出白球的概率是0.27,那么摸出黑球的概率是0.32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=3${\;}^{\sqrt{x-2}}}$的值域为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的焦点为F1、F2,AB是椭圆过焦点F1的弦,则△ABF2的周长是20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知三个不同的平面α,β,γ,三条不重合的直线m,n,l,有下列四个命题:
①若m⊥l,n⊥l,则m∥n;
②若α⊥γ,β⊥γ,则α∥β;
③若m⊥α,m∥n,n?β,则α⊥β;
④若m∥α,α∩β=n,则m∥n
其中真命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$f(x)={log_{\frac{1}{2}}}x$的递减区间是(  )
A.$(0,\frac{1}{2}]$B.(0,+∞)C.(0,1]D.[1,+∞)

查看答案和解析>>

同步练习册答案