9£®ÒÑÖªÍÖÔ²£ºC£º$\frac{{x}^{2}}{9}$+y2=1£¬µãM£¨0£¬$\frac{1}{2}$£©£®
£¨1£©ÉèPÊÇÍÖÔ²CÉÏÈÎÒâµÄÒ»µã£¬QÊǵãP¹ØÓÚ×ø±êÔ­µãµÄ¶Ô³Æµã£¬¼Ç¦Ë=$\overrightarrow{MP}$•$\overrightarrow{MQ}$£¬Çó¦ËµÄÈ¡Öµ·¶Î§£»
£¨2£©ÒÑÖªµãD£¨-1£¬-$\frac{1}{2}$£©£¬E£¨1£¬-$\frac{1}{2}$£©£¬PÊÇÍÖÔ²CÉÏÔÚµÚÒ»ÏóÏÞÄڵĵ㣬¼ÇlΪ¾­¹ýÔ­µãÓëµãPµÄÖ±Ïߣ¬sΪ¡÷DEM½ØÖ±ÏßlËùµÃµÄÏ߶㤣¬ÊÔ½«s±íʾ³ÉÖ±ÏßlµÄбÂÊkµÄº¯Êý£®

·ÖÎö £¨1£©ÉèP£¨x0£¬y0£©£¬ÔòQ£¨-x0£¬-y0£©£¬$\overrightarrow{MP}$=$£¨{x}_{0}£¬{y}_{0}-\frac{1}{2}£©$£¬$\overrightarrow{MQ}$=$£¨-{x}_{0}£¬-{y}_{0}-\frac{1}{2}£©$£®ÀûÓÃÊýÁ¿»ýÔËËãÐÔÖʼ°Æä${y}_{0}^{2}$=1-$\frac{{x}_{0}^{2}}{9}$£¬ÓÖ${x}_{0}^{2}$¡Ê[0£¬9]£¬¼´¿ÉµÃ³ö£®
£¨2£©ÓÉPÊÇÍÖÔ²CÉÏÔÚµÚÒ»ÏóÏÞÄڵĵ㣬ÔòlµÄбÂÊk¡Ê£¨0£¬+¡Þ£©£¬ÇÒl£ºy=kx£®µ±k¡Ê$£¨0£¬\frac{1}{2}]$ʱ£¬¡÷DFM½ØÖ±ÏßlËùµÃµÄÏ߶εÄÁ½¸ö¶Ëµã·Ö±ðÊÇÖ±Ïßl£ºy=kxÓëÖ±ÏßDM£¬EMµÄ½»µãΪA£¬B£¬ÓÉÒÑÖªDM£ºy=x+$\frac{1}{2}$£¬EM£ºy=-x+$\frac{1}{2}$£¬ÁªÁ¢·½³Ì×é¿ÉµÃÖ±ÏߵĽ»µã£¬ÀûÓÃÁ½µãÖ®¼äµÄ¾àÀ빫ʽ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÉèP£¨x0£¬y0£©£¬ÔòQ£¨-x0£¬-y0£©£¬$\overrightarrow{MP}$=$£¨{x}_{0}£¬{y}_{0}-\frac{1}{2}£©$£¬$\overrightarrow{MQ}$=$£¨-{x}_{0}£¬-{y}_{0}-\frac{1}{2}£©$£®
¡à¦Ë=$\overrightarrow{MP}$•$\overrightarrow{MQ}$=$-{x}_{0}^{2}$-${y}_{0}^{2}$+$\frac{1}{4}$£¬ÓÖ${y}_{0}^{2}$=1-$\frac{{x}_{0}^{2}}{9}$£¬
¡à$¦Ë=-\frac{8{x}_{0}^{2}}{9}$-$\frac{3}{4}$£¬ÓÖ${x}_{0}^{2}$¡Ê[0£¬9]£¬¡à¦Ë¡Ê$[-\frac{35}{4}£¬-\frac{3}{4}]$£®
£¨2£©¡ßPÊÇÍÖÔ²CÉÏÔÚµÚÒ»ÏóÏÞÄڵĵ㣬ÔòlµÄбÂÊk¡Ê£¨0£¬+¡Þ£©£¬ÇÒl£ºy=kx£®
µ±k¡Ê$£¨0£¬\frac{1}{2}]$ʱ£¬¡÷DFM½ØÖ±ÏßlËùµÃµÄÏ߶εÄÁ½¸ö¶Ëµã·Ö±ðÊÇÖ±Ïßl£ºy=kxÓëÖ±ÏßDM£¬EMµÄ½»µãΪA£¬B£¬ÓÉÒÑÖªDM£ºy=x+$\frac{1}{2}$£¬EM£ºy=-x+$\frac{1}{2}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{y=x+\frac{1}{2}}\end{array}\right.$£¬½âµÃA$£¨\frac{1}{2£¨k-1£©}£¬\frac{k}{2£¨k-1£©}£©$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{y=-x+\frac{1}{2}}\end{array}\right.$£¬½âµÃB$£¨\frac{1}{2£¨k+1£©}£¬\frac{k}{2£¨k+1£©}£©$£¬
ÓÚÊÇs=|AB|=$\sqrt{{k}^{2}+1}$|xA-xB|=$\sqrt{{k}^{2}+1}$•$\frac{1}{1-{k}^{2}}$£»
µ±k¡Ê$£¨\frac{1}{2}£¬+¡Þ£©$ʱ£¬¡÷DEM½ØÖ±ÏßlËùµÃµÄÏ߶εÄÁ½¸ö¶Ëµã·Ö±ðÊÇÖ±Ïßl£ºy=kxÓëÖ±ÏßDE£¬EMµÄ½»µãG£¬B£¬ÓÉÒÑÖªDE£ºy=-$\frac{1}{2}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{y=-\frac{1}{2}}\end{array}\right.$£¬½âµÃG$£¨-\frac{1}{2k}£¬-\frac{1}{2}£©$£¬
ÓÚÊÇs=s£¨k£©=|GB|=$\sqrt{{k}^{2}+1}$$•\frac{2k+1}{2k£¨k+1£©}$£®
×ÛÉÏËùÊö£¬s=$\left\{\begin{array}{l}{\sqrt{{k}^{2}+1}•\frac{1}{1-{k}^{2}}£¬k¡Ê£¨0£¬\frac{1}{2}]}\\{\sqrt{{k}^{2}+1}•\frac{2k+1}{2k£¨k+1£©}£¬k¡Ê£¨\frac{1}{2}£¬+¡Þ£©}\end{array}\right.$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢·½³Ì×éÓëÖ±ÏߵĽ»µã¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢ÊýÁ¿»ýÔËËãÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÍÖÔ²$\frac{x^2}{4}+{y^2}=1$Éϵĵ㵽ֱÏß$x-y+5\sqrt{5}=0$µÄ¾àÀëµÄ×î´óÖµÊÇ3$\sqrt{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=2x£¬x¡Ê[0£¬3]£¬Ôòg£¨x£©=f£¨2x£©-f£¨x+2£©µÄ¶¨ÒåÓòΪ[0£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖª¶¯Ô²¹ý¶¨µãP£¨2£¬0£©£¬ÇÒÔÚyÖáÉϽصÃÏÒ³¤Îª4£®
£¨1£©Çó¶¯Ô²Ô²ÐĵĹ켣QµÄ·½³Ì£»
£¨2£©ÒÑÖªµãE£¨m£¬0£©ÎªÒ»¸ö¶¨µã£¬¹ýEµã·Ö±ð×÷бÂÊΪk1¡¢k2µÄÁ½ÌõÖ±Ïßl1¡¢l2£¬Ö±Ïßl1½»¹ì¼£QÓÚA¡¢BÁ½µã£¬Ö±Ïßl2½»¹ì¼£QÓÚC¡¢DÁ½µã£¬Ï߶ÎAB¡¢CDµÄÖеã·Ö±ðÊÇM¡¢N£®Èôk1+k2=1£¬ÇóÖ¤£ºÖ±ÏßMNºã¹ý¶¨µã£¬²¢Çó³ö¸Ã¶¨µãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÈôaºÍbÒìÃ棬bºÍcÒìÃ棬Ôò£¨¡¡¡¡£©
A£®a¡ÎcB£®aºÍcÒìÃæ
C£®aºÍcÒìÃæ»òƽÐлòÏཻD£®aºÍcÏཻ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÖ±Ïßl1ÓëÔ²ÐÄΪCµÄÔ²£¨x-1£©2+£¨y-2£©2=4ÏཻÓÚ²»Í¬µÄA£¬BÁ½µã£¬¶ÔƽÃæÄÚÈÎÒâµãQ¶¼ÓÐ$\overrightarrow{QC}=¦Ë\overrightarrow{QA}+£¨1-¦Ë£©\overrightarrow{QB}$£¬¦Ë¡ÊR£¬ÓÖµãPΪֱÏßl2£º3x+4y+4=0ÉϵĶ¯µã£¬Ôò$\overrightarrow{PA}•\overrightarrow{PB}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®21B£®9C£®5D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®º¯Êýy=loga£¨x+3£©-1£¨a£¾0ÇÒa¡Ù1£©µÄͼÏóºã¹ý¶¨µãA£¬ÈôµãAÔÚÖ±Ïßmx+ny+1=0ÉÏ£¬ÆäÖÐm£¾0£¬n£¾0£¬Ôò$\frac{1}{m}+\frac{1}{n}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$3+2\sqrt{2}$B£®$4\sqrt{2}$C£®4+2$\sqrt{3}$D£®$4\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚ³¤·½ÌåABCD-A1B1C1D1ÖУ¬ÀâAD=DC=3£¬DD1=4£¬EÊÇA1AµÄÖе㣮
£¨1£©ÇóÖ¤£ºA1C¡ÎƽÃæBED£»
£¨2£©Çó¶þÃæ½ÇE-BD-AµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÍÖÔ²$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬¶¯Ö±ÏßlÓëÍÖÔ²½»ÓÚB£¬CÁ½µã£¨BÔÚµÚÒ»ÏóÏÞ£©£®
£¨1£©ÈôµãBµÄ×ø±êΪ£¨1£¬$\frac{3}{2}$£©£¬Çó¡÷OBCÃæ»ýµÄ×î´óÖµ£»
£¨2£©ÉèB£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬ÇÒ3y1+y2=0£¬Ç󵱡÷OBCÃæ»ý×î´óʱ£¬Ö±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸