·ÖÎö £¨1£©ÉèP£¨x0£¬y0£©£¬ÔòQ£¨-x0£¬-y0£©£¬$\overrightarrow{MP}$=$£¨{x}_{0}£¬{y}_{0}-\frac{1}{2}£©$£¬$\overrightarrow{MQ}$=$£¨-{x}_{0}£¬-{y}_{0}-\frac{1}{2}£©$£®ÀûÓÃÊýÁ¿»ýÔËËãÐÔÖʼ°Æä${y}_{0}^{2}$=1-$\frac{{x}_{0}^{2}}{9}$£¬ÓÖ${x}_{0}^{2}$¡Ê[0£¬9]£¬¼´¿ÉµÃ³ö£®
£¨2£©ÓÉPÊÇÍÖÔ²CÉÏÔÚµÚÒ»ÏóÏÞÄڵĵ㣬ÔòlµÄбÂÊk¡Ê£¨0£¬+¡Þ£©£¬ÇÒl£ºy=kx£®µ±k¡Ê$£¨0£¬\frac{1}{2}]$ʱ£¬¡÷DFM½ØÖ±ÏßlËùµÃµÄÏ߶εÄÁ½¸ö¶Ëµã·Ö±ðÊÇÖ±Ïßl£ºy=kxÓëÖ±ÏßDM£¬EMµÄ½»µãΪA£¬B£¬ÓÉÒÑÖªDM£ºy=x+$\frac{1}{2}$£¬EM£ºy=-x+$\frac{1}{2}$£¬ÁªÁ¢·½³Ì×é¿ÉµÃÖ±ÏߵĽ»µã£¬ÀûÓÃÁ½µãÖ®¼äµÄ¾àÀ빫ʽ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÉèP£¨x0£¬y0£©£¬ÔòQ£¨-x0£¬-y0£©£¬$\overrightarrow{MP}$=$£¨{x}_{0}£¬{y}_{0}-\frac{1}{2}£©$£¬$\overrightarrow{MQ}$=$£¨-{x}_{0}£¬-{y}_{0}-\frac{1}{2}£©$£®
¡à¦Ë=$\overrightarrow{MP}$•$\overrightarrow{MQ}$=$-{x}_{0}^{2}$-${y}_{0}^{2}$+$\frac{1}{4}$£¬ÓÖ${y}_{0}^{2}$=1-$\frac{{x}_{0}^{2}}{9}$£¬
¡à$¦Ë=-\frac{8{x}_{0}^{2}}{9}$-$\frac{3}{4}$£¬ÓÖ${x}_{0}^{2}$¡Ê[0£¬9]£¬¡à¦Ë¡Ê$[-\frac{35}{4}£¬-\frac{3}{4}]$£®
£¨2£©¡ßPÊÇÍÖÔ²CÉÏÔÚµÚÒ»ÏóÏÞÄڵĵ㣬ÔòlµÄбÂÊk¡Ê£¨0£¬+¡Þ£©£¬ÇÒl£ºy=kx£®
µ±k¡Ê$£¨0£¬\frac{1}{2}]$ʱ£¬¡÷DFM½ØÖ±ÏßlËùµÃµÄÏ߶εÄÁ½¸ö¶Ëµã·Ö±ðÊÇÖ±Ïßl£ºy=kxÓëÖ±ÏßDM£¬EMµÄ½»µãΪA£¬B£¬ÓÉÒÑÖªDM£ºy=x+$\frac{1}{2}$£¬EM£ºy=-x+$\frac{1}{2}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{y=x+\frac{1}{2}}\end{array}\right.$£¬½âµÃA$£¨\frac{1}{2£¨k-1£©}£¬\frac{k}{2£¨k-1£©}£©$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{y=-x+\frac{1}{2}}\end{array}\right.$£¬½âµÃB$£¨\frac{1}{2£¨k+1£©}£¬\frac{k}{2£¨k+1£©}£©$£¬
ÓÚÊÇs=|AB|=$\sqrt{{k}^{2}+1}$|xA-xB|=$\sqrt{{k}^{2}+1}$•$\frac{1}{1-{k}^{2}}$£»
µ±k¡Ê$£¨\frac{1}{2}£¬+¡Þ£©$ʱ£¬¡÷DEM½ØÖ±ÏßlËùµÃµÄÏ߶εÄÁ½¸ö¶Ëµã·Ö±ðÊÇÖ±Ïßl£ºy=kxÓëÖ±ÏßDE£¬EMµÄ½»µãG£¬B£¬ÓÉÒÑÖªDE£ºy=-$\frac{1}{2}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{y=-\frac{1}{2}}\end{array}\right.$£¬½âµÃG$£¨-\frac{1}{2k}£¬-\frac{1}{2}£©$£¬
ÓÚÊÇs=s£¨k£©=|GB|=$\sqrt{{k}^{2}+1}$$•\frac{2k+1}{2k£¨k+1£©}$£®
×ÛÉÏËùÊö£¬s=$\left\{\begin{array}{l}{\sqrt{{k}^{2}+1}•\frac{1}{1-{k}^{2}}£¬k¡Ê£¨0£¬\frac{1}{2}]}\\{\sqrt{{k}^{2}+1}•\frac{2k+1}{2k£¨k+1£©}£¬k¡Ê£¨\frac{1}{2}£¬+¡Þ£©}\end{array}\right.$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢·½³Ì×éÓëÖ±ÏߵĽ»µã¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢ÊýÁ¿»ýÔËËãÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | a¡Îc | B£® | aºÍcÒìÃæ | ||
C£® | aºÍcÒìÃæ»òƽÐлòÏཻ | D£® | aºÍcÏཻ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 21 | B£® | 9 | C£® | 5 | D£® | 0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $3+2\sqrt{2}$ | B£® | $4\sqrt{2}$ | C£® | 4+2$\sqrt{3}$ | D£® | $4\sqrt{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com