精英家教网 > 高中数学 > 题目详情
16.已知抛物线过点(a,2),焦点到准线的距离为-2a,则抛物线的标准方程为x2=32y.

分析 焦点到准线的距离为-2a>0,可得a<0.设抛物线的标准方程为x2=2py,(p>0).可得$\left\{\begin{array}{l}{{a}^{2}=4p}\\{-2a=p}\end{array}\right.$,解得a,p,即可得出.

解答 解:∵焦点到准线的距离为-2a>0,∴a<0.
设抛物线的标准方程为x2=2py,(p>0).
可得$\left\{\begin{array}{l}{{a}^{2}=4p}\\{-2a=p}\end{array}\right.$,解得a=-8,p=16.
∴抛物线的标准方程为x2=32y.
故答案为:x2=32y.

点评 本题考查了抛物线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=log2(|x+1|+|x-1|-a).
(1)当a=4时,求函数f(x)的定义域;
(2)若函数f(x)的定义域是R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\sqrt{({x-1})({3-x})}$的单调减区间是[2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2+2x=15,M是圆C上的动点,N(1,0),MN的垂直平分线交CM于点P,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C的普通方程为2x2-y2=4,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$.
(1)将直线l的参数方程化为普通方程;
(2)设直线l与曲线C的交点为A,B,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,某机械转动的三个齿轮啮合传动.若A轮的直径为180mm,B、C两轮的直径都是120mm,且∠ABC=70°,求A、C两齿轮的中心距离(精确到1mm).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sinα+cosα=$\frac{1}{4}$,则sin2α=-$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.过点(0,2)的直线L与双曲线x2-y2=2相交于不同两点E,F.若△OEF的面积不小于2$\sqrt{2}$.求直线L的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sinx•$\sqrt{si{n}^{2}x}$+cosx•$\sqrt{co{s}^{2}x}$=-1,则x为(  )
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

查看答案和解析>>

同步练习册答案