精英家教网 > 高中数学 > 题目详情
已知f(x)的定义域为{x|x∈R,x≠1}且f(x)的图象关于(1,0)对称,当x<1时,f(x)=2x2-x+1,则当x>1时,f(x)的减区间为(  )
A、[
5
4
,+∞)
B、[
7
4
,+∞)
C、(1,
5
4
]
D、(1,
7
4
]
考点:二次函数的性质
专题:函数的性质及应用
分析:由f(x)的图象关于(1,0)对称,得f(x)=-f(2-x),再设x>1,则2-x<1,代入解析式求出f(2-x),由关系式求出f(x),根据二次函数的单调性求出它的减区间.
解答: 解:∵f(x)的图象关于(1,0)对称,
∴f(x)=-f(2-x),
设x>1,则2-x<1,
∵当x<1时,f(x)=2x2-x+1,
∴f(2-x)=2(2-x)2-(2-x)+1=2x2-7x+7,
∴f(x)=-f(2-x)=-2x2+7x-7,
∴函数的对称轴x=
7
4

故所求的减区间是[
7
4
,+∞).
故选:B.
点评:本题主要考查对单调性和奇偶性的理解,判断函数奇偶性和求函数单调区间的基本方法以及函数解析式的求解方法的掌握,关键利用奇函数的定义推出的关系式;并且函数的单调性、奇偶性是高考函数题的重点考查内容.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体AC1中,与侧棱AA1异面且垂直的棱有(  )
A、3条B、4条C、6条D、8条

查看答案和解析>>

科目:高中数学 来源: 题型:

一个棱长为2的正方体,它的8个顶点都在同一个球面上,则这个球的表面积为(  )
A、8πB、12π
C、4πD、16π

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆C1:(x-a)2+y2=r2(r>0)与抛物线C2:x2=2py(p>0)的一个交点M(2,1),且抛物线在点M处的切线过圆心C1.求C1和C2的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若动点P(a,b)到两直线l1:y=x和l2:y=-x+2的距离之和为
2
,则a2+b2的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是不为0的常数,函数f(x)=
1
a
-
1
x

(1)判定并说明函数f(x)的奇偶性;
(2)用单调性的定义证明函数f(x)在(0,+∞)上是单调递增函数;
(3)若f(x)在[
1
2
,2]上的值域是[
1
2
,2],求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=-x2+2ax与g(x)=
a
x+1
在区间[1,2]上都是减函数,则a的范围(  )
A、(-1,0)∪(0,1)
B、(-1,0)∪( 0,1]
C、(0,1)
D、( 0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+sin(x-
π
3
).
(Ⅰ)求f(x)的周期;
(2)求f(x)的单调递增区间及最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“菱形的四条边相等”的否定是
 

查看答案和解析>>

同步练习册答案