精英家教网 > 高中数学 > 题目详情
(1)一种产品的年产量原来是a件,在今后m年内,计划使年产量平均每年比上一年增加p%,写出年产量随经过年数变化的函数关系式.
(2)一种产品的成本原来是a元,在今后m年内,计划使成本平均每年比上一年降低p%,写出成本随经过年数变化的函数关系式.
(1)设年产量经过x年增加到y件,
第一年为  y=a(1+p%)
第二年为  y=a(1+p%)(1+p%)=a(1+p%)2
第三年为  y=a(1+p%)(1+p%)(1+p%)=a(1+p%)3

则y=a(1+p%)x(x∈N*且x≤m).
(2)设成本经过x年降低到y元,
第一年为  y=a(1-p%)
第二年为  y=a(1-p%)(1-p%)=a(1-p%)2
第三年为  y=a(1-p%)(1-p%)(1-p%)=a(1-p%)3

则y=a(1-p%)x(x∈N*且x≤m).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

数列
1
2
,-
1
4
1
8
,-
1
16
,…
的一个通项公式为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}满足a1=2,a2=5,an+2=3an+1-2an
(1)求证:数列{an+1-an}是等比数列;
(2)求数列{an}的通项公式;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知各项均为正数的等比数列{an}中,a1=1,a3=4.
(I)求数列{an}的通项公式;
(II)设bn=
5
2
+log2an
,求数列{bn}的前n项和Sn
(III)比较
1
2
n3
+2(n∈N*)与(II)中Sn的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知等差数列11,8,5,…,它的第八项是______.

查看答案和解析>>

科目:高中数学 来源:松江区模拟 题型:单选题

(文)已知等比数列{xn}的公比是不为1的正数,数列{yn}满足yn•logxna=2(a>0,a≠1),当y4=15,y7=9时,数列{yn}的前k项和最大,则k的值为                                           (  )
A.9B.10C.11D.12(yn=23-2n)

查看答案和解析>>

科目:高中数学 来源:房山区二模 题型:单选题

已知等比数列{an}中,a3=4,a6=
1
2
,则公比q=(  )
A.-
1
2
B.-2C.2D.
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约(  )年可使当年总销售量达到30000台.(结果保留到个位)(lg6≈0.20,lg1.1≈0.041)
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:


查看答案和解析>>

同步练习册答案