精英家教网 > 高中数学 > 题目详情
已知函数y=sinx+cosx,x∈R.
(1)当函数y取得最大值时,求自变量x的集合;
(2)该函数的图象可由y=sinx (x∈R)的图象经过怎样的平移和伸缩变换得到?
【答案】分析:(1)本小题主要考查三角函数的图象和性质,利用三角公式进行恒等变形的技能以及运算能力.
(2)图象变换过程中只有平移没有伸缩,这样就降低了本题的难度,同学们不会在平移的大小上出错.
解答:解:(1)y=sinx+cosx
=2(sinxcos+cosxsin
=2sin(x+),x∈R
y取得最大值必须且只需
x+=,k∈Z,
即x=,k∈Z.
所以,当函数y取得最大值时,自变量x的集合为
{x|x=+2kπ,k∈Z}.
(2)变换的步骤是:
①把函数y=sinx的图象向左平移,得到函数y=sin(x+)的图象;
②令所得到的图象上各点横坐标不变,把纵坐标伸长到原来的2倍,得到函数y=2sin(x+)的图象;
经过这样的变换就得到函数y=sinx+cosx的图象.
点评:三角变换过程中最后结果应满足下列要求:i函数种类应尽可能少;ii次数应尽可能低;iii项数尽可能少;iv尽可能不含分母;v尽可能去掉括号.若是研究三角函数的性质,最后结果一定是y=Asin(ωx+φ)的形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=(sinx+cosx)2+2
3
cos2x
求它的最大、最小值,并指明函数取最大、最小值时相应x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sinx+
3
cosx

(1)求它的最小正周期和最大值;
(2)求它的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sinx在点(
π
3
3
2
)
的切线与y=log2x在点A处的切线平行,则点A的横坐标是
2log2e.(注:填
2
ln2
也给分)
2log2e.(注:填
2
ln2
也给分)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sinx+cosx,给出下列四个命题:
(1)若x∈[0,
π
2
]
,则y∈(0,
2
]

(2)直线x=-
4
是函数y=sinx+cosx图象的一条对称轴;
(3)在区间[
π
4
4
]
上函数y=sinx+cosx是减函数;
(4)函数y=sinx+cosx的图象可由y=
2
sinx
的图象向右平移
π
4
个单位而得到.其中正确命题的序号是
(2)(3)
(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sinx+cosx,y=2
2
sinxcosx
,则下列结论中,正确的序号是

①两函数的图象均关于点(-
π
4
,0)成中心对称;
②两函数的图象均关于直线x=-
π
4
成轴对称;
③两函数在区间(-
π
4
π
4
)上都是单调增函数; 
④两函数的最小正周期相同.

查看答案和解析>>

同步练习册答案