精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别是a,b,c,若(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若a=3,△ABC的面积为
3
3
2
,求
BA
AC
的值.
考点:平面向量数量积的运算,余弦定理
专题:计算题,解三角形,平面向量及应用
分析:(Ⅰ)运用正弦定理和两角和的正弦公式,化简整理,即可得到B;
(Ⅱ)运用三角形的面积公式和余弦定理,结合向量的数量积的定义,即可计算得到.
解答: 解:(Ⅰ)∵(2a-c)cosB=bcosC,
由正弦定理得:(2sinA-sinC)cosB=sinB•cosC,
∴2sinAcosB=sinCcosB+cosCsinB=sin(B+C)=sinA,
∵0<A<π,∴sinA>0∴2cosB=1,cosB=
1
2

又0<B<π,∴B=
π
3

(Ⅱ)∵a=3,△ABC的面积为
3
3
2

1
2
×3csin
π
3
=
3
3
2
∴c=2,
b2=22+32-2×2×3cos
π
3
=7
,即b=
7

cosA=
22+(
7
)
2
-32
2×2×
7
=
7
14

BA
AC
=bccos(π-A)
=
7
×(-
7
14
)=-1
点评:本题考查正弦定理和余弦定理及面积公式的运用,考查平面向量的数量积的定义,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
i
j
为互相垂直的单位向量,
a
=
i
-2
j
b
=
i
j
a
b
的夹角为锐角,则实数λ的取值范围是(  )
A、(-∞,
1
2
B、(
1
2
,+∞)
C、(-2,
2
3
)∪(
2
3
,+∞)
D、(-∞,-2)∪(-2,
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=3,(n+1)an-nan+1=1,n∈N*
(1)证明数列{an}是等差数列,并求{an}的通项公式;
(2)设数列{
1
(an-1)an
}的前n项和为Tn ,证明:Tn
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

方程cos2x+sinx=1在(0,π)上的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-
3x+2
x+1
在(-∞,a)上单调递减,则实数a的范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=1+i,z2=
1
1+i
在复平面内对应的点分别为P1、P2,O为坐标原点,则向量
OP1
OP2
所成的角为(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

九个人排成三行三列的方阵,从中任选三人,则至少有两人位于同行或同列的概率为(  )
A、
3
7
B、
4
7
C、
1
14
D、
13
14

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈A,
1
x
∈A,则称A是“伙伴关系集合”,在集合M={-1, 0, 
1
3
, 
1
2
,1, 2, 3, 4}
的所有非空子集任选一个集合,则该集合是“伙伴关系集合”的概率为(  )
A、
1
51
B、
1
17
C、
7
255
D、
4
255

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx(sinx+cosx)-1.
(1)求函数的最小正周期和最值;
(2)画出函数在区间[-
π
2
π
2
]上的图象.

查看答案和解析>>

同步练习册答案