精英家教网 > 高中数学 > 题目详情
17.已知离心率是$\sqrt{5}$的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点与抛物线y2=20x的焦点重合,则该双曲线的标准方程为$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

分析 利用抛物线方程求出双曲线的焦点坐标,通过离心率求出a,然后求解b,即可求解双曲线方程.

解答 解:离心率是$\sqrt{5}$的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点与抛物线y2=20x的焦点重合,
可得c=5,$\frac{c}{a}$=$\sqrt{5}$,可得a=$\sqrt{5}$,则b=$\sqrt{{c}^{2}-{a}^{2}}$=2$\sqrt{5}$.
所求的双曲线方程为:$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.
故答案为:$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

点评 本题考查抛物线以及双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xoy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=t+3}\\{y=3-t}\end{array}}\right.$(参数t∈R),圆C的参数方程为$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}}\right.$(参数θ∈[0,2π])
(1)将直线l和圆C的参数方程化为普通方程;
(2)求圆心到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x∈N|-1<x<5},B={x|-x2+5x+6>0},则A∩B=(  )
A.{-1,0,1,3}B.{-1,0,1,2}C.{-1,0,1}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y满足不等式组$\left\{\begin{array}{l}{y-x≥0}\\{x+y-7≤0}\\{x≥0}\end{array}\right.$,则z=2x+y的最大值是(  )
A.$\frac{7}{2}$B.$\frac{21}{2}$C.14D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\frac{{x}^{2}}{2}$+sinx+2014,则f′(x)的大致图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若以直角坐标系xOy的O为极点,Ox为极轴,选择相同的长度单位建立极坐标系,得曲线的极坐标方程是ρsin2θ=6cosθ.
(1)将曲线C的极坐标方程ρsin2θ=6cosθ化为直角坐标方程,并指出曲线是什么曲线;
(2)若直线l的参数方程为$\left\{\begin{array}{l}x=\frac{3}{2}+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),当直线l与曲线C相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,0<x<2}\\{{{(\frac{2}{3})}^x}+\frac{5}{9},x≥2}\end{array}}\right.$.若函数g(x)=f(x)-k有两个不同的零点,则实数k的取值范围是$(\frac{5}{9},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设x、y满足约束条件$\left\{{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤2}\end{array}}\right.$,则z=-2x+3y的最小值是-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过抛物线y2=4x的焦点F且斜率为$2\sqrt{2}$的直线交抛物线于A,B两点(xA>xB),则$\frac{{|{AF}|}}{{|{BF}|}}$=(  )
A.$\frac{3}{2}$B.$\frac{3}{4}$C.3D.2

查看答案和解析>>

同步练习册答案