精英家教网 > 高中数学 > 题目详情
在平面直角坐标系下,已知A(2,0),B(0,2),C(cos2x,sin2x),f(x)=
AB
AC

(1)求f(x)的表达式和最小正周期;
(2)当0<x<
π
2
时,求f(x)的值域.
分析:(1)先计算两个向量
AB
AC
的坐标,再利用向量数量积运算性质计算f(x),将所得f(x)解析式化为y=Asin(ωx+φ)的形式,最后利用周期公式计算f(x)的最小正周期即可
(2)先求内层函数y=2x-
π
4
的值域,再利用正弦函数的图象和性质求y=sin(2x-
π
4
)的值域,最后由y=2
2
t+4的单调性即可得f(x)的值域
解答:解:(1)∵A(2,0),B(0,2),C(cos2x,sin2x),
AB
=(-2,2)
AC
=(-2+cos2x,sin2x)

f(x)=
AB
AC
=(-2,2)•(cos2x-2,sin2x)=4-2cos2x+2sin2x=2
2
sin(2x-
π
4
)+4

∴f(x)═2
2
sin(2x-
π
4
)+4

∴f(x)的最小正周期为T=
2

(2)∵0<x<
π
2
-
π
4
<2x-
π
4
4
-
2
2
<sin(2x-
π
4
)≤1

2<f(x)≤4+2
2
.所以函数f(x)的值域是(2 , 4+2
2
]
点评:本题考察了向量数量积运算的性质和三角变换、三角函数的图象和性质,解题时要能熟练的将函数化为y=Asin(ωx+φ)形式,为利用三角函数的图象和性质求周期和最值创造条件
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系下,曲线C1
x=2t+2a
y=-t
(t为参数),曲线C2:x2+(y-2)2=4.若曲线C1、C2有公共点,则实数a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系下,已知A(2,0),B(0,2),C(cos2x,sin2x),(0<x<
π
2
),f(x)=
AB
AC

(Ⅰ)求f(x)的表达式;
(Ⅱ)求f(x)的最小正周期和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程)在平面直角坐标系下,曲线C1
x=2t+2a
y=-t
(t为参数),曲线C2
x=2cosθ
y=2+2sinθ
(a为参数).若曲线Cl、C2有公共点,则实数a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系下,曲线C1
x=-2t+2
y=-t
(t为参数),曲线C2
x=2cosθ
y=2+2sinθ
(θ为参数),则曲线C1、C2的公共点的个数为
0
0

查看答案和解析>>

同步练习册答案