精英家教网 > 高中数学 > 题目详情

已知圆C:(x-2)2+(y-1)2=1,则经过圆C的圆心,且焦点在x轴上的抛物线标准方程是________.

y2=x
分析:根据圆C方程求得圆心C的坐标为(2,1),再由抛物线焦点在x轴上且经过点C,设出抛物线方程并代入点C坐标,化简即得抛物线标准方程.
解答:∵圆C方程是(x-2)2+(y-1)2=1,
∴圆心C坐标为(2,1)
∵抛物线焦点在x轴上,∴可设抛物线方程为y2=2px
又∵点C(2,1)在抛物线上
∴12=2p×2,解之得2p=,可得抛物线方程为y2=x
故答案为:y2=x
点评:本题给出抛物线焦点在x轴上并且经过已知圆的圆心,求抛物线的标准方程,着重考查了抛物线的基本概念和圆的标准方程等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x-2)2+(y-4)2=4,直线l1过原点O(0,0).
(1)若l1与圆C相切,求l1的方程;
(2)若l1与圆C相交于不同两点P、Q,线段PQ的中点为M,又l1与l2:x+2y+1=0的交点为N,求证:OM•ON为定值;
(3)求问题(2)中线段MN长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x+2)2+y2=24,定点A(2,0),M为圆C上一动点,点P在AM上,点N在CM上(C为圆心),且满足
.
AM
= 2
.
AP
.
NP
-
.
AM
=0
,设点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)过点B(m,0)作倾斜角为
5
6
π
的直线l交曲线E于C、D两点.若点Q(1,0)恰在以线段CD为直径的圆的内部,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-2)2+y2=1,D是y轴上的动点,直线DA、DB分别切圆C于A、B两点.
(1)如果|AB|=
4
2
3
,求直线CD的方程;
(2)求动弦AB的中点的轨迹方程E;
(3)直线x-y+m=0(m为参数)与方程E交于P、Q两个不同的点,O为原点,设直线OP、OQ的斜率分别为KOP,KOQ,试将KOP•KOQ表示成m的函数,并求其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-2)2+(y-1)2=2,过原点的直线l与圆C相切,则所有过原点的切线的斜率之和为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-2)2+(y-1)2=25,过点M(-2,4)的圆C的切线l1与直线l2:ax+3y+2a=0平行,则l1与l2间的距离是(  )
A、
8
5
B、
2
5
C、
28
5
D、
12
5

查看答案和解析>>

同步练习册答案