精英家教网 > 高中数学 > 题目详情

【题目】已知两个不共线的向量满足 .

1)若垂直,求的值;

2)当时,若存在两个不同的使得成立,求正数的取值范围.

【答案】1 ;(2

【解析】试题分析1)已知垂直,所以以,变形得由两向量的坐标可求得两向量的模分别为 ,代入上式可得,求得.求向量的模应先求向量的平方所以 ,故 . 2)由条件,得,整理得,即,用向量坐标表示数量积得,用辅助角公式得.,又要有两解,结合正弦函数图象可得, ,所以,解一元二次不等式,又因为,所以.

试题解析:解:(1)由条件知 ,又垂直,

所以,所以.

所以 ,故 .

2)由,得

所以.

,又要有两解,结合三角函数图象可得,

,即,又因为,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正四棱锥中,已知异面直线所成的角为,给出下面三个命题:

:若,则此四棱锥的侧面积为

:若分别为的中点,则平面

:若都在球的表面上,则球的表面积是四边形面积的倍.

在下列命题中,为真命题的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex﹣ax﹣2.
(1)求f(x)的单调区间;
(2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市随机抽取一年内100 天的空气质量指数(AQI)的监测数据,结果统计如表:

API

[0,50]

(50,100]

(100,150]

(150,200]

(200,300]

>300

空气质量

轻度污染

轻度污染

中度污染

重度污染

天数

6

14

18

27

20

15


(1)若本次抽取的样本数据有30 天是在供暖季,其中有8 天为严重污染.根据提
供的统计数据,完成下面的2×2 列联表,并判断是否有95%的把握认为“该城市本年的
空气严重污染与供暖有关”?

非重度污染

严重污染

合计

供暖季

非供暖季

合计

100


(2)已知某企业每天的经济损失y(单位:元)与空气质量指数x 的关系式为y= 试估计该企业一个月(按30 天计算)的经济损失的数学期望.
参考公式:K2=

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .若曲线在点处的切线方程为为自然对数的底数).

1)求函数的单调区间;

2)若关于的不等式在(0,+)上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式.

(1)当时,解不等式;

(2)如果不等式的解集为空集,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .若曲线在点处的切线方程为为自然对数的底数).

1)求函数的单调区间;

2)若关于的不等式在(0,+)上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,PB⊥面ABCD,BA=BD= ,AD=2,E,F分别是棱AD,PC的中点.

(1)证明:EF∥平面PAB;
(2)若二面角P﹣AD﹣B为60°,求直线EF与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的焦点在x轴上,长轴长为4,离心率为 . (Ⅰ)求椭圆E的标准方程;
(Ⅱ)已知点A(0,1)和直线l:y=x+m,线段AB是椭圆E的一条弦且直线l垂直平分弦AB,求实数m的值.

查看答案和解析>>

同步练习册答案