精英家教网 > 高中数学 > 题目详情

【题目】如图所示,四棱锥 中,底面 为菱形,且直线 又棱 的中点,
(Ⅰ) 求证:直线
(Ⅱ) 求直线 与平面 的正切值.

【答案】解:证明:∵∠ADE=∠ABC=60°,ED=1,AD=2∴△AED是以∠AED为直角的Rt△
又∵AB∥CD, ∴EA⊥AB
又PA⊥平面ABCD,∴EA⊥PA,
∴EA⊥平面PAB,
(Ⅱ)

如图所示,连结PE,过A点作AH⊥PE于H点
∵CD⊥EA, CD⊥PA
∴CD⊥平面PAE,∴AH⊥CD,又AH⊥PE
∴AH⊥平面PCD
∴∠AEP为直线AE与平面PCD所成角
在Rt△PAE中,∵PA=2,AE=

【解析】(1)只需证明直线EA⊥AB,且EA⊥PA即可;
(2)先证明AH⊥平面PCD,得出∠AEP为直线AE与平面PCD所成角,在Rt△PAE中计算tan∠AEP的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,一个角形海湾AOB,AOB=2θ(常数θ为锐角).拟用长度为l(l为常数)的围网围成一个养殖区,有以下两种方案可供选择:

方案一 如图1,围成扇形养殖区OPQ,其中=l;

方案二 如图2,围成三角形养殖区OCD,其中CD=l;

(1)求方案一中养殖区的面积S1

(2)求证:方案二中养殖区的最大面积S2

(3)为使养殖区的面积最大,应选择何种方案?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右焦点为F,不垂直x轴且不过F点的直线l与椭圆C相交于A,B两点.
(Ⅰ)若直线l经过点P(2,0),则直线FA、FB的斜率之和是否为定值?若是,求出该定值;若不是,请说明理由;
(Ⅱ)如果FA⊥FB,原点到直线l的距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)讨论 的单调性;
(2)当 时,证明: 对于任意的 成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣x2﹣lnx存在极值,若这些极值的和大于5+ln2,则实数a的取值范围为(
A.(﹣∞,4)
B.(4,+∞)
C.(﹣∞,2)
D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱 ,侧面 .
(Ⅰ)若 分别是 的中点,求证:
(Ⅱ)若三棱柱 的各棱长均为2,侧棱 与底面 所成的角为 ,问在线段 上是否存在一点 ,使得平面 ?若存在,求 的比值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区工会利用“健步行” 开展健步走积分奖励活动.会员每天走5 千步可获积分30分(不足5千步不积分), 每多走2千步再积20分(不足2千步不积分).为了解会员的健步走情况,工会在某天从系统中随机抽取了 1000名会员,统计了当天他们的步数,并将样本数据分为九组,整理得到如图频率分布直方图:

(1)求当天这1000名会员中步数少于11千步的人数;

(2)从当天步数在的会员中按分层抽样的方式抽取6人,再从这6人中随机抽取2人,求这2人积分之和不少于200分的概率;

(3)写出该组数据的中位数(只写结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角所对的边分别是,且的等差中项.

(Ⅰ)求角

(Ⅱ)设,求周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,设命题 :指数函数 上单调递增.命题 :函数 的定义域为 .若“ ”为假,“ ”为真,求 的取值范围.

查看答案和解析>>

同步练习册答案