精英家教网 > 高中数学 > 题目详情
3.抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得数字分别为x,y.设ξ为随机变量,若$\frac{x}{y}$为整数,则ξ=0;若$\frac{x}{y}$为小于1的分数,则ξ=-1;若$\frac{x}{y}$为大于1的分数,则ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).

分析 (1)数对(x,y)共有16种,利用列举法求出使$\frac{x}{y}$为整数的种数,由此能求出概率P(ξ=0).
(2)随机变量ξ的所有取值为-1,0,1,分别求出相应的概率,由此能求出ξ的分布列和数学期望.

解答 解:(1)依题意,数对(x,y)共有16种,其中使$\frac{x}{y}$为整数的有以下8种:
(1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2),
所以$P(ξ=0)=\frac{8}{16}=\frac{1}{2}$;
(2)随机变量ξ的所有取值为-1,0,1,
ξ=-1有以下6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),
故$P(ξ=-1)=\frac{6}{16}=\frac{3}{8}$,
ξ=1有以下2种:(3,2),(4,3),故$P(ξ=1)=\frac{2}{16}=\frac{1}{8}$,
∴P(ξ=0)=1-$\frac{3}{8}-\frac{1}{8}$=$\frac{1}{2}$,
∴ξ的分布列为:

ξ-101
P$\frac{3}{8}$$\frac{1}{2}$$\frac{1}{8}$
ξ的数学期望为$E(ξ)=-1×\frac{3}{8}+0×\frac{1}{2}+1×\frac{1}{8}=-\frac{1}{4}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设向量$\overrightarrow{a}$、$\overrightarrow{b}$均为单位向量且夹角为120°,则($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)等于(  )
A.$\frac{1}{2}$B.0C.-$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.以下五个说法:
①函数y=x2在R上是增函数.   
②函数$y=\frac{1}{x}$的单调递减区间是(-∞,0)∪(0,+∞).
③实数集可以表示为{R}.  
④方程$\sqrt{2x-1}+|{2y+1}|=0$的解集是$\{(\frac{1}{2},-\frac{1}{2})\}$.
⑤集合M={y|y=x2+1,x∈R}与集合N={(x,y)|y=x2+1,x∈R}表示同一个集合.
其中正确的命题序号是④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|-1≤x≤1},B={x|x2-1>0},则下列结论中正确的是(  )
A.A?BB.A∪B=AC.A∩B=BD.RB=A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知关于x的不等式|x-1|+|x-2|≥m对x∈R恒成立.
(Ⅰ)求实数m的最大值;
(Ⅱ)若a,b,c为正实数,k为实数m的最大值,且$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=k$,求证:a+2b+3c≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}+\overrightarrow{c}$=2$\overrightarrow{b}$,则称向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$依次成“等差”向量;若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}•\overrightarrow{c}$=$\overrightarrow{{b}^{2}}$,则称$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$依次成“等比”向量.已知直线l上不同三点A,B,C,O为直线l外一点,有以下说法:
①若$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$依次成“等差”向量,则点B是线段AC的中点;
②若点B是线段AC的中点,则$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$依次成“等差”向量;
③若点B是线段AC的中点,则$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$可能依次成“等比”向量;
④若|$\overrightarrow{OA}$|=5,|$\overrightarrow{OC}$|=8,|$\overrightarrow{AC}$|=7,则$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$不可能依次成“等比”向量.
其中说法正确的序号是①②④(把正确说法的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=x2-4x-4在区间[t,t+1](t∈R)上的最小值记为g(t).
(1)试写出g(x)的函数表达式;
(2)求g(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在数列{an},若a${\;}_{n}^{2}$-a${\;}_{n-1}^{2}$=k(n≥2,n∈N*,k为常数),则称{an}为等方差数列.
(1)若数列{bn}是等方差数列,b1=1,b2=3,写出所有满足条件的数列{bn}的前4项;
(2)若等方差数列{an}满足a1=2,a2=2$\sqrt{2}$,an>0,设数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn,是否存在正整数p,q,使不等式Tn>$\sqrt{pn+q}$-1对一切n∈N*都成立?若存在,求出p,q的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知角x≠$\frac{kπ}{2}$(k∈Z),函数F(x)=$\frac{|sinx|}{cos(\frac{3π}{2}+x)}$-$\frac{sin(\frac{3π}{2}-x)}{|cosx|}$+$\frac{|tanx|}{tanx}$,则F(x)可能取值的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案