精英家教网 > 高中数学 > 题目详情
已知A、B、C分别是△ABC的三个内角,且cosA•cos(A-B)=cosB.
(1)求证:△ABC是等腰三角形;
(2)若tanA=2,求tanC的值.
(1)由已知,得cosA(cosAcosB+sinAsinB)=cosB,
即(1-cos2A)cosB=sinAcosAsinB,
亦即sin2AcosB=sinAcosAsinB.
因为sinA>0,所以sinAcosB=cosAsinB,
于是sin(A-B)=0.
又-π<A-B<π,从而A=B.
故△ABC是等腰三角形.
(2)在△ABC中,有C=π-(A+B)=π-2A,
所以tanC=tan(π-2A)=-tan2A.
由tanA=2得tan2A=
2tanA
1-tan2A
=-
4
3

所以tanC的值为
4
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若b2=ac,求角B的范围.
(2)若acosA=bcosB,试判断△ABC的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
3
,A+C=2B,则sinC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若
cosB
cosC
=-
b
2a+c
,则B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC中角A,B,C的对边,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大小;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角A,B,C的对边,且满足2asinB-
3
b=0.
(Ⅰ)求角A的大小;
(Ⅱ)当A为锐角时,求函数y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步练习册答案