精英家教网 > 高中数学 > 题目详情
如图,正四棱柱ABCD-A1B1C1D1中,底面边长为,侧棱长为4,E、F分别是棱AB,BC的中点,EF与BD相交于G.
(1)求证:平面EFB1⊥平面BDD1B1
(2)求点B到平面B1EF的距离.

【答案】分析:(1)要证面EFB1⊥面BDD1B1,可先证明EF⊥平面BDD1B1,证出 EF⊥BD,EF⊥BB1即可.
(2)在平面BDD1B1中,作BH⊥B1G于为H,说明BH⊥面B1EF,BH就是点B到平面B1EF的距离,在Rt△B1BG中利用等面积法求出BH.
解答:解:(1)证明:∵EF∥AC,AC⊥BD,∴EF⊥BD,根据正四棱柱的性质EF⊥BB1,BD∩BB1=B,可知EF⊥平面BDD1B1,…(3分)
又EF?面B1EF,∴面EFB1⊥面BDD1B1…(7分)
(2)可知∴面EFB1⊥面BDD1B1,在平面BDD1B1中,作BH⊥B1G于为H,∵面EFB1⊥面BDD1B1,面EFB1∩面BDD1B1=B1G
∴BH⊥面B1EF,BH就是点B到平面B1EF的距离…(10分)
在Rt△B1BG中,B1B=4,BG=1,BH⊥B1G⇒BH=…(12分)
点评:本题考查线面垂直,面面垂直的定义,性质、判定,空间距离的计算.考查了空间想象能力、计算能力,分析解决问题能力.空间问题平面化是解决空间几何体问题最主要的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1-ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:2013届安徽省高二上学期期中考试理科数学 题型:解答题

(本小题满分12分)如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB的中点.

(1)求证:AC1∥平面CNB1

(2)求四棱锥C-ANB1A1的体积.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1-ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:安徽省期中题 题型:解答题

如图是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1﹣ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:安徽省期中题 题型:解答题

如图是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1﹣ANB1A1的体积.

查看答案和解析>>

同步练习册答案