精英家教网 > 高中数学 > 题目详情
已知直线l与抛物线y2=8x交于A,B两点,且l经过抛物线的焦点F;
(1)若已知A点的坐标为(8,8),求线段AB中点到准线的距离.
(2)求△ABO面积最小时,求直线l的方程.
分析:(1)确定抛物线的焦点坐标,求出AB的方程,代入抛物线方程,求得线段AB中点横坐标,即可求出线段AB中点到准线的距离.
(2)△ABO面积最小时,AB最短,此时AB⊥x轴,从而可求直线l的方程.
解答:精英家教网解:(1)依题意得F(2,0),∴直线AB方程为
y-0
8-0
=
x-2
8-2
,化简得y=
4
3
(x-2)

代入y2=8x得2x2-17x+8=0,∴线段AB中点横坐标为
x1+x2
2
=
17
2
2
=
17
4

又准线方程为x=-2,∴中点到准线距离d=
17
4
-(-2)=
25
4

(2)设AB的方程为x=my+2,代入y2=8x,可得y2-8my-16=0,
设A(x1,y1),B(x2,y2),∴y1+y2=8m,y1y2=-16,
∴|y1-y2|=
64m2+64
,∴m=0时,|y1-y2|最小为8,
SABO=
1
2
•2
|y1-y2|,∴m=0时,△ABO面积最小,此时AB⊥x轴,
∴面积最小为8,所求直线方程为:x=2.
点评:本题考查直线与抛物线的位置关系,考查三角形面积的计算,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知M(m,m2)、N(n,n2)是抛物线C:y=x2上两个不同点,且m2+n2=1,m+n≠0,直线l是线段MN的垂直平分线.设椭圆E的方程为
x2
2
+
y2
a
=1(a>0,a≠2)

(Ⅰ)当M、N在抛物线C上移动时,求直线L斜率k的取值范围;
(Ⅱ)已知直线L与抛物线C交于A、B、两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,OP中点为S,若
OR
OS
=0
,求椭圆E离心率的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直线l与抛物线y=
1
4
x2
相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).
(1)若动点M满足
AB
BM
+
2
|
AM
|=0
,求动点M的轨迹C的方程;
(2)若过点B的直线l'(斜率不等于零)与(1)中的轨迹C交于不同
的两点E、F(E在B、F之间),且
BE
BF
,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1两焦点F1,F2,则椭圆上存在六个不同点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.
其中正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l是抛物线y=x2的一条切线,且l与直线2x-y+4=0平行,则直线l的方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以动点P为圆心的圆与直线y=-
1
20
相切,且与圆x2+(y-
1
4
2=
1
25
外切.
(Ⅰ)求动P的轨迹C的方程;
(Ⅱ)若M(m,m1),N(n,n1)是C上不同两点,且 m2+n2=1,m+n≠0,直线L是线段MN的垂直平分线.
    (1)求直线L斜率k的取值范围;
    (2)设椭圆E的方程为
x2
2
+
y2
a
=1(0<a<2).已知直线L与抛物线C交于A、B两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,PQ中点为S,若
OR
OS
=0,求E离心率的范围.

查看答案和解析>>

同步练习册答案