精英家教网 > 高中数学 > 题目详情
19.已知曲线f(x)=$\frac{a+lnx}{x}$在点(e,f(e))处切线的斜率为-e-2
(1)若函数f(x)在[m,m+1]上存在极值,求实数m的取值范围;
(2)求证:当x>1时,$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

分析 (1)求出函数的导数,根据f′(e)=-$\frac{1}{{e}^{2}}$,求出a的值,从而求出函数的单调区间,结合题意得到关于m的不等式组,解出即可.
(2)不等式转化为$\frac{1}{e+1}$•$\frac{(x+1)(lnx+1)}{x}$>$\frac{{2e}^{x-1}}{{xe}^{x}+1}$,令g(x)=$\frac{(x+1)(lnx+1)}{x}$,令h(x)=$\frac{{2e}^{x-1}}{{xe}^{x}+1}$,根据函数的单调性证明即可.

解答 解:(1)∵f(x)=$\frac{a+lnx}{x}$,∴f′(x)=$\frac{1-a-lnx}{{x}^{2}}$,
由题意得:f′(e)=-$\frac{1}{{e}^{2}}$,∴-$\frac{a}{{e}^{2}}$=-$\frac{1}{{e}^{2}}$,解得:a=1,
∴f(x)=$\frac{1+lnx}{x}$,f′(x)=-$\frac{lnx}{{x}^{2}}$,(x>0),
x∈(0,1)时,f′(x)>0,f(x)递增,
x∈(1,+∞)时,f′(x)<0,f(x)递减,
故函数f(x)在x=1时取得极值,
又函数f(x)在[m,m+1]上存在极值,
∴m≤1≤m+1,∴0≤m≤1,
故m的范围是[0,1];
(2)证明:x>1时,$\frac{f(x)}{e+1}$>$\frac{{2e}^{x-1}}{(x+1)({xe}^{x}+1)}$,
即为$\frac{1}{e+1}$•$\frac{(x+1)(lnx+1)}{x}$>$\frac{{2e}^{x-1}}{{xe}^{x}+1}$,
令g(x)=$\frac{(x+1)(lnx+1)}{x}$,
则g′(x)=$\frac{x-lnx}{{x}^{2}}$,
令ω(x)=x-lnx,则ω′(x)=$\frac{x-1}{x}$,
∵x>1,∴ω′(x)>0,
∴ω(x)在(1,+∞)递增,
∵ω(1)=1,∴x>1时,g′(x)>0,
g(x)在(1,+∞)递增,
∴x>1时,g(x)>g(1),又g(1)=2,
故$\frac{g(x)}{e+1}$>$\frac{2}{e+1}$,
令h(x)=$\frac{{2e}^{x-1}}{{xe}^{x}+1}$,则h′(x)=$\frac{{2e}^{x-1}(1{-e}^{x})}{{({xe}^{x}+1)}^{2}}$,
∵x>1,∴$\frac{{2e}^{x-1}(1{-e}^{x})}{{({xe}^{x}+1)}^{2}}$<0,
∴x>1时,h′(x)<0,
故函数h(x)在(1,+∞)递减,
又h(1)=$\frac{2}{e+1}$,
∴x>1时,h(x)<$\frac{2}{e+1}$,
∴$\frac{g(x)}{e+1}$>h(x),
即$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

点评 本题考查了函数的单调性、极值、最值问题,考查导数的应用以及不等式的证明,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列命题中正确的是(  )
A.命题“?x∈R,使得x2-1<0”的否定是“?x∈R,均有x2-1>0”
B.命题“若cosx=cosy,则x=y”的逆否命题是真命题:
C.命题“存在四边相等的四边形不是正方形”是假命题
D.命题”若x=3,则x2-2x-3=0”的否命题是“若x≠3,则x2-2x-3≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:方程$\frac{x^2}{2m}+\frac{y^2}{1-m}$=1表示焦点在x轴上的椭圆,命题q:方程$\frac{x^2}{m}-\frac{y^2}{1-m}$=1表示双曲线,则p是q的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过点P(3,2)作曲线C:x2+y2-2x=0的两条切线,切点分别为A,B,则直线AB的方程为(  )
A.2x+2y-3=0B.2x-2y-3=0C.4x-y-3=0D.4x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$\frac{cos(π-2α)}{sin(α-\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,则sin2α=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足an=an-1+an-2(n>2),且a2015=1,a2017=-1,则a2000=(  )
A.0B.-3C.-4D.-18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某公共汽车站,每隔15分钟有一辆车出发,并且出发前在车站停靠3分钟,则某人随机到达该站的候车时间不超过10分钟的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{15}$C.$\frac{13}{15}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若以双曲线$\frac{x^2}{a^2}$-y2=1(a>0)的左、右焦点和点(1,2$\sqrt{2}$)为顶点的三角形为直角三角形,则此双曲线的焦距长为(  )
A.10B.8C.2$\sqrt{5}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.△ABC的外接圆的圆心为O,半径为1,2$\overrightarrow{AO}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,则$\overrightarrow{BA}$•$\overrightarrow{BC}$=(  )
A.1B.2C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案