精英家教网 > 高中数学 > 题目详情

已知点P(x,y)为椭圆数学公式上一点,F1、F2为椭圆左、右焦点,下列结论中:①△PF1F2面积的最大值为数学公式;②若过点P、F2的直线l与椭圆的另一交点为Q,则△PF1Q的周长为8;③若过点P、F2的直线l与椭圆的另一交点为Q,则恒有数学公式;对定点数学公式,则数学公式的取值范围为数学公式.其中正确结论的番号是________.

②③④
分析:①△PF1F2面积S=|F1F2|•|y|,所以当|y|取最大值时,△PF1F2面积最大,此时点P为椭圆短轴端点;
②利用椭圆的第一定义,即可求得;
③分斜率存在与不存在讨论,假设直线方程代入椭圆方程,借助于韦达定理与椭圆的第二定义,化简即可;
④根据定点在椭圆的内部,点P(x,y)为椭圆上一点,可得=,从而当且仅当P、A、F1三点共线时,取得最小与最大,取得最小与最大.
解答:①△PF1F2面积S=|F1F2|•|y|=|y|,所以当|y|取最大值时,△PF1F2面积最大,所以点P为椭圆短轴端点时,|y|取最大值,此时y=±1,即△PF1F2面积的最大值S=,故①错误;
②∵P,Q在椭圆上,F1、F2为椭圆左、右焦点
∴△PF1Q的周长为2a+2a=4a,
∵a=2
∴△PF1Q的周长为8,
故②正确;
③斜率存在时,设P(x1,y1),Q(x2,y2),直线方程为:y=k(x
代入椭圆方程得:

根据椭圆的第二定义可得:
∴|PF2|=a-ex1,|QF2|=a-ex2

==


当斜率不存在时,,∴,故③正确;
④∵定点在椭圆的内部,点P(x,y)为椭圆上一点,
=
当且仅当P、A、F1三点共线时,取得最小与最大,取得最小与最大.


的取值范围为,故④正确
故答案为:②③④
点评:本题以椭圆为载体,考查椭圆的性质,考查椭圆的两个定义,解题思维有点困难,计算要细心.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(x,y)为圆C:x2+y2-6x+8=0上的一点,则x2+y2的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)为曲线y=x+
1
x
上任一点,点A(0,4),则直线AP的斜率k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)为椭圆
x2
4
+y2=1
上一点,F1、F2为椭圆左、右焦点,下列结论中:①△PF1F2面积的最大值为
2
;②若过点P、F2的直线l与椭圆的另一交点为Q,则△PF1Q的周长为8;③若过点P、F2的直线l与椭圆的另一交点为Q,则恒有
|PF2|+|QF2|
|PF2|•|QF2|
=4
;对定点A(
3
2
1
2
)
,则|
PA
|+|
PF2
|
的取值范围为[4-
7
,4+
7
.其中正确结论的番号是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P(x,y)为椭圆
x2
4
+y2=1
上一点,F1、F2为椭圆左、右焦点,下列结论中:①△PF1F2面积的最大值为
2
;②若过点P、F2的直线l与椭圆的另一交点为Q,则△PF1Q的周长为8;③若过点P、F2的直线l与椭圆的另一交点为Q,则恒有
|PF2|+|QF2|
|PF2|•|QF2|
=4
;对定点A(
3
2
1
2
)
,则|
PA
|+|
PF2
|
的取值范围为[4-
7
,4+
7
.其中正确结论的番号是______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市朝阳区高二(上)期末数学试卷(文科)(解析版) 题型:选择题

已知点P(x,y)为圆C:x2+y2-6x+8=0上的一点,则x2+y2的最大值是( )
A.2
B.4
C.9
D.16

查看答案和解析>>

同步练习册答案