【题目】设抛物线C:的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若,求线段中点M的轨迹方程;
(2)若直线AB的方向向量为,当焦点为时,求的面积;
(3)若M是抛物线C准线上的点,求证:直线的斜率成等差数列.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆C: (a>b>0)的离心率为,右焦点F到右准线的距离为3.
(1)求椭圆C的方程;
(2)过点F作直线l (不与x 轴重合)和椭圆C交于M, N两点,设点.
①若的面积为,求直线l方程;
②过点M作与)轴垂直的直线l"和直线NA交于点P,求证:点P在一条定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线为:到两定点、距离乘积为常数的动点的轨迹.以下结论正确的个数为( )
(1)曲线一定经过原点;
(2)曲线关于轴、轴对称;
(3)的面积不大于;
(4)曲线在一个面积为的矩形范围内.
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某烘焙店加工一个成本为60元的蛋糕,然后以每个120元的价格出售,如果当天卖不完,剩下的这种蛋糕作餐厨垃圾处理.
(1)若烘焙店一天加工16个这种蛋糕,,求当天的利润(单位:元)关于当天需求量(单位:个,)的函数解析式;
(2)烘焙店记录了100天这种蛋糕的日需求量(单位:个),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①若烘焙店一天加工16个这种蛋糕,表示当天的利润(单位:元),求的分布列与数学期望及方差;
②若烘焙店一天加工16个或17个这种蛋糕,仅从获得利润大的角度考虑,你认为应加工16个还是17个?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校积极开展“服务社会,提升自我”的志愿者服务活动,九年级的五名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人同时参加一个外贸公司的招聘,招聘分笔试与面试两部分,先笔试后面试.甲笔试与面试通过的概率分别为0.8,0.5,乙笔试与面试通过的概率分别为0.8,0.4,且笔试通过了才能进入面试,面试通过则直接招聘录用,两人笔试与面试相互独立互不影响.
(1)求这两人至少有一人通过笔试的概率;
(2)求这两人笔试都通过却都未被录用的概率;
(3)记这两人中最终被录用的人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数().
(1)证明:当时,在上是增函数;
(2)是否存在实数,只有唯一正数,对任意正数,使不等式恒成立?若存在,求出这样的;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com