精英家教网 > 高中数学 > 题目详情

(本小题满分8分)如图四边形为梯形,,求图中阴影部分绕旋转一周所形成的几何体的表面积和体积。

(1)
(2)

解析试题分析:旋转后几何体是一个圆台,从上面挖去一个半球,根据数据利用面积公式与体积公式,可求其表面积和体积.
解:(1)旋转后的几何体是一个圆台,从上面挖去一个半球,
旋转体的表面积由三部分组成:圆台下底面、侧面和一个半球面          …(1分)
  …(4分)
故所求几何体的表面积为:
,                 …(5分)                         …(7分)          …(8分)
考点:本题主要是考查组合体的面积、体积问题,考查空间想象能力,数学公式的应用,是中档题
点评:解决该试题的关键是根据三视图可知原几何体的形状,确定之后利用体积公式和表面积公式来解得。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,正三棱柱中,侧面是边长为2的正方形,的中点,在棱上.

(1)当时,求三棱锥的体积.
(2)当点使得最小时,判断直线是否垂直,并证明结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一个几何体的三视图(单位:cm)如图所示,求

(1)该几何体的体积
(2)该几何体的表面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱中,点的中点.

(Ⅰ)求证: 平面
(Ⅱ)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分为12分)
如图所示:已知⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A作于E,求证:
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分) 在长方体中,分别是的中点,
.
(Ⅰ)求证://平面
(Ⅱ)在线段上是否存在点,使直线垂直,
如果存在,求线段的长,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,在四棱锥中,底面是正方形,侧棱底面的中点,作于点
(1)证明 //平面
(2)求二面角的大小;
(3)证明⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)如图,四边形是矩形,平面上一点,平面,点分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长10cm.求:圆锥的母长

查看答案和解析>>

同步练习册答案