精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥PABCD中,底面ABCD是直角梯形,AD//BCBC2ADADCDPD⊥平面ABCDEPB的中点.

(1)求证:AE//平面PDC

(2)BCCDPD,求直线AC与平面PBC所成角的余弦值.

【答案】1)证明见解析;(2

【解析】

1)取的中点,连结,推导出四边形是平行四边形,从而,由此能证明平面

2)推导出,由,得,再推导出,从而平面,进而平面,连结,则就是直线与平面所成角,由此能求出直线与平面所成角的余弦值.

解:(1)证明:取的中点,连结

的中点,,且

,且

四边形是平行四边形,

平面平面

2)解:是等腰三角形,

,又

平面平面

,又平面

平面

平面

连结,则就是直线与平面所成角,

中,解得

中,解得

中,

直线与平面所成角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,是棱的中点.

1)证明:直线平面

2)若,证明:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子里装有个均匀的红球和个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为.

1)求的值;

2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一所医院在某时间段为发烧超过38的病人特设发热门诊,该门诊记录了连续5天昼夜温差()与就诊人数的资料:

日期

1

2

3

4

5

昼夜温差()

8

10

13

12

7

就诊人数(人)

18

25

28

27

17

(1)求的相关系数,并说明昼夜温差()与就诊人数具有很强的线性相关关系.

(2)求就诊人数(人)关于出昼夜温差()的线性回归方程,预测昼夜温差为9时的就诊人数.

附:样本的相关系数为,当时认为两个变量有很强的线性相关关系.

回归直线方程为,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,直线相交于点,且它们的斜率之积为,记动点的轨迹为曲线

(1)求曲线的方程;

(2)过点的直线与曲线交于两点,是否存在定点,使得直线斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:

支持

不支持

合计

男性市民

女性市民

合计

(1)根据已知数据,把表格数据填写完整;

(2)利用(1)完成的表格数据回答下列问题:

(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;

(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,ACBC,且,AC=BC=2DE分别为ABPB中点,PD⊥平面ABCPD=3.

(1)求直线CE与直线PA夹角的余弦值;

(2)求直线PC与平面DEC夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一所医院在某时间段为发烧超过38的病人特设发热门诊,该门诊记录了连续5天昼夜温差()与就诊人数的资料:

日期

1

2

3

4

5

昼夜温差()

8

10

13

12

7

就诊人数(人)

18

25

28

27

17

(1)求的相关系数,并说明昼夜温差()与就诊人数具有很强的线性相关关系.

(2)求就诊人数(人)关于出昼夜温差()的线性回归方程,预测昼夜温差为9时的就诊人数.

附:样本的相关系数为,当时认为两个变量有很强的线性相关关系.

回归直线方程为,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在点处的切线方程为,求(1)实数的值;(2)函数的单调区间以及在区间上的最值.

查看答案和解析>>

同步练习册答案