精英家教网 > 高中数学 > 题目详情
如图,平行六面体ANCD-EFGH中,棱AB,AD,AE的长分别为3,4,5,∠EAD=∠EAB=∠DAB=120°,则AG的长为______.
因为其为平行六面体
所以
AG
=
AB
+
BC
+
CG
=
AB
+
AD
+
AE

AG
2
=(
AB
+
AD
+
AE
)
2

=
AB
2
+
AD
2
+
AE
2
+2
AB
AD
+
2
AB
AE
+2
AD
AE

=32+42+52+2×3×4×cos120°+2×3×5×cos120°+2×4×5×cos120°
=50-12-15-20=3.
∴|
AG
|=
3

故答案为:
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

判断下列命题是否正确.
(1)两个相交平面有不在同一直线上的三个公共点;
(2)经过空间任意三点有且只有一个平面;
(3)一个角一定是平面图形;
(4)在空间两两相交的三条直线必共面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知圆锥的底面直径和母线长均为4,过OA上一点P作平面α,当OBα时平面a截圆锥所得的截口曲线为抛物线,设抛物线的焦点为F,若OP=1,则|PF|长为(  )
A.
1
4
B.
1
2
C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正四面体ABCD的棱长为a.
(1)求证:AC⊥BD
(2)求AC与BD的距离.
(3)求它的内切球的半径.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面α的一个法向量
n
=(-2,-2,1)
,点A(-1,3,0)在α内,则点P(-2,1,2)到α的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知棱长为a的实心正四面体模型的一条棱AB在桌面α内,设点P是模型表面上任意一点,记P到桌面α的距离的最大值为h,则h的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1棱长为a,则点C1到平面A1BD的距离是(  )
A.
2
2
a
B.
3
3
a
C.
3
a
D.
2
3
3
a

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面α的一个法向量
n
=(-2,-2,1),点A(-1,3,0)在α内,则P(-2,1,4)到α的距离为(  )
A.10B.3C.
8
3
D.
10
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正三棱柱ABC-A1B1C1中,E是BC的中点,D是AA1上的一个动点,且
AD
DA1
=m
,若AE平面DB1C,则m的值等于______.

查看答案和解析>>

同步练习册答案