精英家教网 > 高中数学 > 题目详情
11.如果定义在R上的函数f(x)对任意两个不等的实数x1,x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“Z函数”.给出函数:①y=-x3+1;②y=2x;③$y=\left\{{\begin{array}{l}{ln|x|,x≠0}\\{0,x=0}\end{array}}\right.$;④$y=\left\{{\begin{array}{l}{{x^2}+4x,x≥0}\\{-{x^2}+x,x<0}\end{array}}\right.$.以上函数为“Z函数”的序号为②④,.

分析 利用已知条件推出函数的单调性,然后判断即可.

解答 解:定义在R上的函数f(x)对任意两个不等的实数x1,x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),
可得:x1[f(x1)-f(x2)]>x2[f(x1)-f(x2)],
即(x1-x2)[f(x1)-f(x2)]>0,
∴函数f(x)为“Z函数”.就是增函数.
①y=-x3+1;是减函数,不是“Z函数”.
②y=2x;是增函数,是“Z函数”.
③$y=\left\{{\begin{array}{l}{ln|x|,x≠0}\\{0,x=0}\end{array}}\right.$;表示增函数,不是“Z函数”.
④$y=\left\{{\begin{array}{l}{{x^2}+4x,x≥0}\\{-{x^2}+x,x<0}\end{array}}\right.$.函数是增函数,是“Z函数”.
故答案为:②④.

点评 本题考查函数的新定义,函数的单调性的应用,考查分析问题解决问题的能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且a2-(b-c)2=(2-$\sqrt{3}$)bc,sinAsinB=cos2$\frac{C}{2}$,
(1)求角B的大小;
(2)若等差数列{an}的公差不为零,且a1cos2B=1,且a2、a4、a8成等比数列,求{$\frac{4}{{a}_{n}{a}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在底面边长为1,侧棱长为2的正四棱柱ABCDA1B1C1D1中,P是侧棱CC1上的一点,CP=1,求异面直线AP与BD1所成角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lg(10+x)+lg(10-x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)=ax2+2x-3,g(x)=x2+(1-a)x-a,M={x|f(x)≤0},P={x|g(x)≥0}.若M∩P=R,则实数a的取值集合为{-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱锥P-ABC中,AB=AC,D是BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2.
(1)求证:AP⊥BC;
(2)若点M是线段AP是哪个一点,且AM=3.试证明平面AMC⊥平面BMC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=cos(2x-$\frac{3π}{2}$)的图象关于x=$\frac{3π}{4}$+$\frac{1}{2}$kπ,k∈Z对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.请设计一个算法,输出1000以内除以7余1的所有正整数,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在闭区间[0,2π]上,满足等式sinx=cosx,则x=$\frac{π}{4}$或$\frac{5π}{4}$.

查看答案和解析>>

同步练习册答案