精英家教网 > 高中数学 > 题目详情
某射手每次射击击中目标的概率是,且各次射击的结果互不影响。
(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率
(Ⅱ)假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;
(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列。
,
(1)解:设为射手在5次射击中击中目标的次数,则~.在5次射击中,恰有2次击中目标的概率

(Ⅱ)解:设“第次射击击中目标”为事件;“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件,则

=
=
(Ⅲ)解:由题意可知,的所有可能取值为


=



所以的分布列是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)一个袋中有大小相同的标有1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回),记下标号.若拿出球的标号是3的倍数,则得1分,否则得分.
(Ⅰ)求拿4次至少得2分的概率;
(Ⅱ)求拿4次所得分数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)在某校组织的一次篮球定点投篮训练中,规定每人最多投次;在处每投进一球得分,在处每投进一球得分;如果前两次得分之和超过分即停止投篮,否则投第三次,某同学在处的命中率,在处的命中率为,该同学选择先在处投一球,以后都在处投,用表示该同学投篮训练结束后所得的总分,其分布列为
           
0          
2             
   3   
   4   
   5   
        p        
0.03          
   P1              
   P2        
P3          
P4              
(1)求的值;    
(2)求随机变量的数学期望E

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)甲、乙、丙三人组成一组,参加一个闯关游戏团体赛,三人各自独立闯关,其中甲闯关成功的概率为,甲、乙都闯关成功的概率为,乙、丙都闯关成功的概率为,每人闯关成功得2分,三人得分之和记为小组团体总分.
(1)求乙、丙各自闯关成功的概率;
(2)求团体总分为4分的概率;
(3)若团体总分不小于4分,则小组可参加复赛,求该小组参加复赛的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.
(1)求走出迷宫时恰好用了1小时的概率;
(2)求走出迷宫的时间超过3小时的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在上海世界博览会开展期间,计划选派部分高二学生参加宣传活动,报名参加的学生需进行测试,共设4道选择题,规定必须答完所有题,且答对一题得1分,答错一题扣1分,至少得2分才能入选成为宣传员;甲乙丙三名同学报名参加测试,他们答对每个题的概率都为,且每个人答题相互不受影响.
(1)求学生甲能通过测试成为宣传员的概率;
(2)求至少有两名学生成为宣传员的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)口袋里放了12个大小完全一样的小球,其中3个是红色的,
4个是白色的,5个是蓝色的,现从袋中任意取出4个小球,求:
(1) 取出的小球的颜色至少是两种的概率;
(2) 取出的小球的颜色是三种的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这瓶酒,并重新按品质优劣为它们排序,这称为一轮测试。根据一轮测试中的两次排序的偏离程度的高低为其评为。
现设,分别以表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令

是对两次排序的偏离程度的一种描述。
  (Ⅰ)写出的可能值集合;
(Ⅱ)假设等可能地为1,2,3,4的各种排列,求的分布列;
(Ⅲ)某品酒师在相继进行的三轮测试中,都有
(i)试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);
(ii)你认为该品酒师的酒味鉴别功能如何?说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

把定义域为R的6个函数:
,分别写在6张小卡片上,放入盒中.
(1)现从盒子中任取2张卡片,将卡片上的函数相加得到一个新函数,求所得函数是偶函数的概率;
(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有奇函数卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.

查看答案和解析>>

同步练习册答案