精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=sin(ωx+φ)-$\sqrt{3}$cos(ωx+φ)(0<φ<π,ω>0)的最小正周期为π,且f(-x)=f(x),则φ=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 由条件利用两角和差的正弦公式,奇函数的性质,求得φ的值.

解答 解:∵函数f(x)=sin(ωx+φ)-$\sqrt{3}$cos(ωx+φ)=2sin[(ωx+φ)-$\frac{π}{3}$](0<φ<π,ω>0)的最小正周期为$\frac{2π}{ω}$=π,
求得ω=2,f(x)=2sin(ωx+φ-$\frac{π}{3}$).
再根据f(-x)=f(x),可得f(0)=0,即2sin(φ-$\frac{π}{3}$)=0,故φ=$\frac{π}{3}$,
故选:B.

点评 本题主要考查两角和差的正弦公式,奇函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.若点p在抛物线y2=2x上,A(a,0)
(1)请你完成下表:
实物a的值-200.512
|PA|的最小值 0   
相应的点P坐标    
(2)若α∈R,求|PA|的最小值及相应的点P坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,A,B,C的对边分别为a,b,c,若a=2$\sqrt{3}$,A=$\frac{π}{3}$,C=$\frac{π}{4}$,则b=$\sqrt{6}+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.等差数列{an}的前n项和为Sn,且a2=-5,a6=a4+6.
(1)求该等差数列{an}的通项公式及第20项a20
(2)求S10
(3)判断79是不是该数列的项,如果是,是第几项?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知y=f(x)=2sin(2x+$\frac{π}{3}$).
(1)用五点法画出函数f(x)的大致图象,并写出f(x)的最小正周期;
(2)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]内的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)的定义域为[-4,2),则f(2x)的定义域为(  )
A.-8≤x<4B.-2≤x<4C.-4≤x<2D.-2≤x<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=a-$\frac{2}{{2}^{x}+1}$是R上的奇函数,则f-1($\frac{3}{5}$)的值是(  )
A.2B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A、B、C的对边分别为a、b、c,且cos2A+2$\sqrt{2}$cos(B+C)=-2.
(I)求∠A的大小.
(Ⅱ)若a=2$\sqrt{5}$,△ABC的面积S=6,求b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2,g(x)=x-1.若x<2,求g(x)+$\frac{1}{g(x-1)}$的最大值,并求相应的x值.

查看答案和解析>>

同步练习册答案