精英家教网 > 高中数学 > 题目详情

(湖北卷)(本小题满分14分)

       已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足

   (Ⅰ)证明

(Ⅱ)猜测数列是否有极限?如果有,写出极限的值(不必证明);

(Ⅲ)试确定一个正整数N,使得当时,对任意b>0,都有

解:(Ⅰ)证法1:∵当

 

于是有 

所有不等式两边相加可得 

由已知不等式知,当n≥3时有,

证法2:设,首先利用数学归纳法证不等式

   (i)当n=3时,  由

知不等式成立.

(ii)假设当n=k(k≥3)时,不等式成立,即

即当n=k+1时,不等式也成立.

由(i)、(ii)知,

又由已知不等式得 

   (Ⅱ)有极限,且

   (Ⅲ)∵

则有

故取N=1024,可使当n>N时,都有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年湖北卷理)(本小题满分14分)

已知数列{an}和{bn}满足:a1=λ,an+1=其中λ为实数,n为正整数.

(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;

(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;

(Ⅲ)设0<ab,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有

aSnb?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖北卷理) (本小题满分14分)

过抛物线的对称轴上一点的直线与抛物线相交于MN两点,自MN向直线作垂线,垂足分别为。            

(Ⅰ)当时,求证:

(Ⅱ)记 、的面积分别为,是否存在,使得对任意的,都有成立。若存在,求出的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

 (2009湖北卷理)(本小题满分10分)(注意:在试题卷上作答无效)

一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6。现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量,求的分布列和数学期望。            

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖北卷理)(本小题满分10分)(注意:在试题卷上作答无效

一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6。现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量,求的分布列和数学期望。           

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖北卷理)(本小题满分10分)(注意:在试题卷上作答无效

一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6。现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量,求的分布列和数学期望。           

查看答案和解析>>

同步练习册答案