分析 (1)设M=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,由矩阵变换可得方程组,解方程即可得到所求;
(2)设矩阵M的特征多项式为f(λ),可得特征多项式,解方程可得特征值.
解答 解:(1)设M=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,则$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{1}\\{\frac{1}{2}}\end{array}]$=$[\begin{array}{l}{\frac{9}{4}}\\{-2}\end{array}]$,
$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{0}\\{1}\end{array}]$=$[\begin{array}{l}{-\frac{3}{2}}\\{4}\end{array}]$,
即为$\left\{\begin{array}{l}{a+\frac{1}{2}b=\frac{9}{4}}\\{c+\frac{1}{2}d=-2}\\{b=-\frac{3}{2}}\\{d=4}\end{array}\right.$,即a=3,b=-$\frac{3}{2}$,c=-4,d=4,
则M=$[\begin{array}{l}{3}&{-\frac{3}{2}}\\{-4}&{4}\end{array}]$;
(2)设矩阵M的特征多项式为f(λ),
可得f(λ)=$|\begin{array}{l}{λ-3}&{\frac{3}{2}}\\{4}&{λ-4}\end{array}|$=(λ-3)(λ-4)-6=λ2-7λ+6,
令f(λ)=0,可得λ=1或λ=6.
点评 本题考查矩阵变换和特征值的求法,注意运用待定系数法,考查方程思想的运用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
手机编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
A型待机时间(h) | 120 | 125 | 122 | 124 | 124 | 123 | 123 |
B型待机时间(h) | 118 | 123 | 127 | 120 | 124 | a | b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com