精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆的离心率为,且椭圆经过点,已知点,过点的动直线与椭圆相交于两点, 关于轴对称.

(1)求的方程;

(2)证明: 三点共线.

【答案】(1) .(2)证明见解析.

【解析】试题分析

1)由椭圆的离心率为,且过点及可得可组成关于的方程组,解方程组可得椭圆方程。(2)①当直线轴垂直时,结论成立;②当直线的斜率存在时,设出直线的方程,与椭圆方程联立消元后得到二次方程,利用根据系数的关系并结合斜率公式可得,从而可得结论成立。

试题解析

(1)解:由已知得

解得

所以椭圆的方程为.

(2)证明:①当直线轴垂直时,显然有三点共线。

②当直线的斜率存在时,设直线的方程为

因为直线与椭圆交于A,B两点,

所以

的坐标分别为

因此

易知点关于轴垂直的点的坐标为

所以

有公共点

所以三点共线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列中,如果对任意都有为常数,则称为等差比数列,称为公差比.现给出下列命题:

等差比数列的公差比一定不为

等差数列一定是等差比数列;

,则数列是等差比数列;

若等比数列是等差比数列,则其公比等于公差比.

其中正确的命题的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,经过原点的两直线满足,且交圆于不同两点交 于不同两点,记的斜率为

(1)求的取值范围;

(2)若四边形为梯形,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)当,且时,求的值域;

(2)若存在实数使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

(1)求的单调递增区间;

(2)设,问是否存在极值,若存在,请求出极值,若不存在,请说明理由;

(3)设是函数图象上任意不同的两点,线段的中点为,直线的斜率为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015 年 12 月,华中地区数城市空气污染指数“爆表”,此轮污染为 2015 年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市 2015 年 12 月份某星期星期一到星期日某一时间段车流量与的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期日

车流量(万辆)

1

2

3

4

5

6

7

的浓度(微克/立方米)

28

30

35

41

49

56

62

(1)由散点图知具有线性相关关系,求关于的线性回归方程;(提示数据:

(2)利用(1)所求的回归方程,预测该市车流量为 12 万辆时的浓度.

参考公式:回归直线的方程是

其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水产养殖基地要将一批海鲜用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由水产养殖基地承担.若水产养殖基地恰能在约定日期(×月×日)将海鲜送达,则销售商一次性支付给水产养殖基地万元;若在约定日期前送到,每提前一天销售商将多支付给水产养殖基地万元;若在约定日期后送到,每迟到一天销售商将少支付给水产养殖基地万元.为保证海鲜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送海鲜,已知下表内的信息:

统计信息

汽车

行驶路线

不堵车的情况下到达城市乙所需时间(天)

堵车的情况下到达城市乙所需时间(天)

堵车的概率

运费(万元)

公路

公路

(注:毛利润销售商支付给水产养殖基地的费用运费)

)记汽车走公路时水产养殖基地获得的毛利润为(单位:万元),求的分布列和数学期望

(Ⅱ)假设你是水产养殖基地的决策者,你选择哪条公路运送海鲜有可能让水产养殖基地获得的毛利润更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,已知是正三角形, 平面的中点, 在棱上,且.

(1)求三棱锥的体积;

(2)求证: 平面;

(3)若中点, 在棱上,且,求证: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于的不等式

查看答案和解析>>

同步练习册答案