精英家教网 > 高中数学 > 题目详情
精英家教网如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.
(1)证明:AB⊥PC;
(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC的体积.
分析:(1)利用△PAB是等边三角形,证明AC=BC.取AB中点D,连接PD、CD,通过证明AB⊥平面PDC,然后证明AB⊥PC.
(2)作BE⊥PC,垂足为E,连接AE.通过Rt△PBC≌Rt△PAC,Rt△AEB≌Rt△PEB,说明△AEB,△PEB,△CEB都是等腰直角三角形.然后求出三棱锥P-ABC的体积
解答:精英家教网解:(1)证明:因为△PAB是等边三角形,
∠PAC=∠PBC=90°,
PC=PC
所以Rt△PBC≌Rt△PAC,
可得AC=BC.
如图,取AB中点D,连接
PD、CD,
则PD⊥AB,CD⊥AB,
所以AB⊥平面PDC,
所以AB⊥PC.
(2)作BE⊥PC,垂足为E,连接AE.
因为Rt△PBC≌Rt△PAC,
所以AE⊥PC,AE=BE.
由已知,平面PAC⊥平面PBC,
故∠AEB=90°.
因为Rt△AEB≌Rt△PEB,
所以△AEB,△PEB,△CEB都是等腰直角三角形.
由已知PC=4,得AE=BE=2,
△AEB的面积S=2.
因为PC⊥平面AEB,
所以三棱锥P-ABC的体积
V=
1
3
×S×PC=
8
3
点评:本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案