分析 (Ⅰ)由图可得A,由周期可得ω,再代入点的坐标可得φ值,可得解析式;
(Ⅱ)解不等式2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$可得函数的单调增区间为;
(Ⅲ)由x∈[-$\frac{π}{12}$,$\frac{π}{2}$]可得2x+$\frac{π}{3}$∈[$\frac{π}{6}$,$\frac{4π}{3}$],结合三角函数的图象可得最值.
解答 解:(Ⅰ)由图可知A=1,周期T=4($\frac{7π}{12}$-$\frac{π}{3}$)=π,∴ω=$\frac{2π}{π}$=2,
∴f(x)=sin(2x+φ),代入点($\frac{7π}{12}$,-1)可得-1=sin($\frac{7π}{6}$+φ),
∴$\frac{7π}{6}$+φ=2kπ+$\frac{3π}{2}$,∴φ=2kπ+$\frac{π}{3}$,k∈Z,
∵|φ|<$\frac{π}{2}$,∴当k=0时,φ=$\frac{π}{3}$,
∴f(x)=sin(2x+$\frac{π}{3}$);
(Ⅱ)由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$可得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,
∴函数y=f(x)的单调增区间为:[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z;
(Ⅲ)∵x∈[-$\frac{π}{12}$,$\frac{π}{2}$],∴2x+$\frac{π}{3}$∈[$\frac{π}{6}$,$\frac{4π}{3}$],
当$2x+\frac{π}{3}=\frac{π}{2}$,即x=$\frac{π}{12}$时,f(x)取得最大值2;
当$2x+\frac{π}{3}=\frac{4π}{3}$,即x=$\frac{π}{2}$时,f(x)取得最小值$-\frac{{\sqrt{3}}}{2}$,
∴f(x)的值域为[$-\frac{{\sqrt{3}}}{2}$,2].
点评 本题考查三角函数图象和解析式,涉及三角函数的单调性和值域,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)是R上的增函数 | B. | f(x)可能不存在单调的增区间 | ||
C. | f(x)不可能有单调减区间 | D. | f(x)一定有单调增区间 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-2] | B. | (-∞,-2)∪(2,+∞) | C. | (2,+∞) | D. | (-2,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | λ=μ=0 | B. | $\overrightarrow{a}=\overrightarrow{b}=0$ | C. | λ=0,$\overrightarrow{b}$=0 | D. | μ=0,$\overrightarrow{a}$=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com