精英家教网 > 高中数学 > 题目详情
12.已知复数z满足(1+2i)z=3-4i,则$|{\overline z}|$=(  )
A.$\frac{{\sqrt{5}}}{5}$B.1C.$\sqrt{5}$D.5

分析 化简复数,即可求出$|{\overline z}|$.

解答 解:∵(1+2i)z=3-4i,
∴z=$\frac{3-4i}{1+2i}$=-1-2i,
∴|$\overline{z}$|=-1+2i,
∴$|{\overline z}|$=|-1+2i|=$\sqrt{1+4}$=$\sqrt{5}$,
故选:C.

点评 本题考查复数的化简,考查复数的模,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设公比为q(q>0)的等比数列{an}的前n项和为Sn,若S2=4a2+3,S4=4a4+3,则q=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买5袋该产品,则获奖的概率为(  )
A.$\frac{31}{81}$B.$\frac{11}{27}$C.$\frac{16}{27}$D.$\frac{50}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知:$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),其中0≤α≤β≤2π,设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,下列判断有:
①|$\overrightarrow{a}$-$\overrightarrow{b}$|$>\sqrt{3}$?θ∈($\frac{2π}{3}$,π);
②若$α+β=\frac{π}{6}$,记f(α)=2$\overrightarrow{a}•\overrightarrow{b}$,则将f(α)的图象保持纵坐标不变,横坐标向左平移$\frac{π}{6}$单位后得到的函数是偶函数;
③若($\overrightarrow{a}$+$\overrightarrow{c}$)$∥\overrightarrow{b}$,且($\overrightarrow{b}$+$\overrightarrow{c}$)∥$\overrightarrow{a}$($\overrightarrow{c}≠\overrightarrow{0}$),则$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$
④已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$θ=\frac{2}{3}π$,C在以O为圆心的圆AB上运动,且满足$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$,(x,y∈R),则x+y∈[1,2];
上述命题正确的有①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(3,-cosωx),向量$\overrightarrow{b}$=(sinωx,$\sqrt{3}$),其中ω>0,函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的最小正周期为π.求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z满足|z|=z+1-3i(其中i为虚数单位),则$\frac{z}{1+i}$的共轭复数是(  )
A.$\frac{7}{2}$+$\frac{1}{2}$iB.-$\frac{7}{2}$+$\frac{1}{2}$iC.$\frac{7}{2}$-$\frac{1}{2}$iD.4-3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\frac{1}{2a}{x^2}$-lnx,其中a=1为大于零的常数.
(1)当a=1时,求函数f(x)的单调区间和极值;
(2)当x∈[1,2]时,不等式f(x)>2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知{an}满足(3-an+1)(3+an)=9,且a1=3,数列$\left\{{\frac{1}{a_n}}\right\}$的前n项和Sn=$\frac{{{n^2}+n}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an},an∈N*,Sn=$\frac{1}{8}$(an+2)2,若bn=$\frac{1}{2}$an-30,求数列{bn}的前n项和的最小值.

查看答案和解析>>

同步练习册答案