精英家教网 > 高中数学 > 题目详情

【题目】已知( +1)m= xm+ym , 其中m,xm , ym∈N*
(1)求证:ym为奇数;
(2)定义:[x]表示不超过实数x的最大整数.已知数列{an}的通项公式为an=[ n],求证:存在{an}的无穷子数列{bn},使得对任意的正整数n,均有bn除以4的余数为1.

【答案】
(1)证明:∵( +1)m= xm+ym

∴( +1)m+1=( xm+ym)( +1)= (xm+ym)+(2xm+ym

得ym+1=2xm+ym,即ym+1与ym同奇偶,

而当m=1时,y1为奇数;

∴ym为奇数


(2)证明:由二项式定理得( ﹣1)m= xm﹣ym

则2xm2﹣ym2=1,即2xm2=ym2+1>ym2

∴ym4<2xm2ym2=ym2(ym2+1)<(ym2+1)2

从而有ym2 xmym<ym2+1,

令n=xmym,则bn=[ n]=[ xmym]=ym2

由(1)知ym为奇数,

∴bn除以4的余数为1


【解析】(1)根据条件得( +1)m+1= (xm+ym)+(2xm+ym),判断ym+1与ym同奇偶,进行判断即可.(2)由二项式定理得( ﹣1)m= xm﹣ym , 建立方程组进行转化求解证明即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】曲线C1的参数方程为 (θ为参数),将曲线C1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的倍,得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-2sinθ)=6.

(1)求曲线C2和直线l的普通方程.

(2)P为曲线C2上任意一点,求点P到直线l的距离的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数,当x∈(-3,2)时,>0,当x∈(-,-3)(2,+)时,<0

(I)求ab的值;

(II)若不等式的解集为R,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点,离心率为.

1求椭圆的方程;

2 是过点且互相垂直的两条直线,其中交圆 两点, 交椭圆于另一个点,求面积取得最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋中装有个红球个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.

(1)用表示一次摸奖中奖的概率

(2)若,设三次摸奖(每次摸奖后球放回)恰好有次中奖,求的数学期望

(3)设三次摸奖(每次摸奖后球放回)恰好有一次中奖的概率,当取何值时, 最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】怀化某中学对高三学生进行体质测试,已知高三某个班有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:cm)
男生成绩在195cm以上(包含195cm)定义为“合格”,成绩在195cm以下(不包含195cm)定义为“不合格”,女生成绩在185cm以上(包含185cm)定义为“合格”,成绩在185cm以下(不包含185cm)定义为“不合格”.
(1)求女生立定跳远成绩的中位数;
(2)若在男生中按成绩合格与否进行分层抽样,抽取6人,求抽取成绩为“合格”的学生人数;
(3)若从(2)中抽取的6名学生中任意选取4个人参加复试,求这4人中至少3人合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向右平移 个单位长度后,所得图象的一条对称轴方程可以是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c均为正数.
(Ⅰ)求证:a2+b2+( 2≥4
(Ⅱ)若a+4b+9c=1,求证: ≥100.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题对任意实数,不等式恒成立;命题方程表示焦点在轴上的双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题:为真命题,且为假命题,求实数的取值范围.

查看答案和解析>>

同步练习册答案