精英家教网 > 高中数学 > 题目详情

【题目】某市图书馆准备进一定量的书籍,由于不同年龄段对图书的种类需求不同,为了合理配备资源,现对该市看书人员随机抽取了一天60名读书者进行调查.将他们的年龄分成6段:后得到如图所示的频率分布直方图,问:

1)在60名读书者中年龄分布在的人数;

2)估计60名读书者年龄的平均数和中位数.

【答案】136人;(25455.

【解析】

1)从频率分布直方图中求出读书者中年龄分布在的频率,由此求得在60名读书者中年龄分布在的人数.

2)利用每组中点乘以对应的频率再相加,求得平均数的估计值;通过从左边开始,频率之和为的位置,由此求得中位数.

1)由频率分布直方图知年龄在的频率为

所以60名读书者中年龄分布在的人数为.

260名读书者年龄的平均数为:

设中位数为,则

解得

60名读书者年龄的中位数为55.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆离心率为,点与椭圆的左、右顶点可以构成等腰直角三角形.点C是椭圆的下顶点,经过椭圆中心O的一条直线与椭圆交于AB两个点(不与点C重合),直线CACB分别与x轴交于点DE

1)求椭圆的标准方程.

2)判断的大小是否为定值,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)当时,若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产产品x件的总成本c(x)=1200+ x3(万元),已知产品单价P(万元)与产品件数x满足:p2= ,生产100件这样的产品单价为50万元.

(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;

(2)产量x定为多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,左、右顶点分别为AB,点M是椭圆C上异于AB的一点,直线AMy轴交于点P

(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;

(Ⅱ)设椭圆C的右焦点为F,点Qy轴上,且∠PFQ=90°,求证:AQBM

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解中学生对交通安全知识的掌握情况,从农村中学和城镇中学各选取100名同学进行交通安全知识竞赛.下图1和图2分别是对农村中学和城镇中学参加竞赛的学生成绩按分组,得到的频率分布直方图.

(Ⅰ)分别估算参加这次知识竞赛的农村中学和城镇中学的平均成绩;

(Ⅱ)完成下面列联表,并回答是否有的把握认为“农村中学和城镇中学的学生对交通安全知识的掌握情况有显著差异”?

成绩小于60分人数

成绩不小于60分人数

合计

农村中学

城镇中学

合计

附:

临界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求处的切线方程;

(2)若对于任意的正数恒成立,求实数的值;

(3)若函数存在两个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在四边形ABCD中,ADBCBC=2ADEF分别为ADBC的中点,AE=EF.将四边形ABFE沿EF折起,使平面ABFE⊥平面EFCD(如图2),GBF的中点.

1)证明:ACEG

2)在线段BC上是否存在一点H,使得DH∥平面ABFE?若存在,求的值;若不存在,说明理由;

3)求二面角D-AC-F的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)求函数的单调区间;

(2)若函数存在两个极值点,且,证明:

查看答案和解析>>

同步练习册答案