精英家教网 > 高中数学 > 题目详情
过抛物线 =4 的焦点F的一条直线与这条抛物线相交于A()、B()两点,求的值。

解析:当k不存在时,直线方程为x=1, 此时=1,=-4,所以=-3。

     当k存在时,由题可得F(1,0),设直线方程为y=kx-k,代入抛物线方程消去y可得,

,=1,再把直线方程代入抛物线方程消去x可得,  =-4,=-3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C1:y2=4ax(a>0),椭圆C以原点为中心,以抛物线C1的焦点为右焦点,且长轴与短轴之比为
2
,过抛物线C1的焦点F作倾斜角为
π
4
的直线l,交椭圆C于一点P(点P在x轴上方),交抛物线C1于一点Q(点Q在x轴下方).
(1)求点P和Q的坐标;
(2)将点Q沿直线l向上移动到点Q′,使|QQ′|=4a,求过P和Q′且中心在原点,对称轴是坐标轴的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于表中:
 x  3 -2  4  
2
 
3
 y -2
3
 0 -4  
2
2
-
1
2
(1)求C1、C2的标准方程;
(2)设直线l与椭圆C1交于不同两点M、N,且
OM
ON
=0
,请问是否存在这样的直线l过抛物线C2的焦点F?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F是抛物线G:x2=4y的焦点.
(Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程;
(Ⅱ)过抛物线G的焦点F,作两条互相垂直的直线,分别交抛物线于A,C,B,D点,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•东城区二模)已知抛物线C1:y2=4ax(a>0),椭圆C以原点为中心,以抛物线C1的焦点为右焦点,且长轴与短轴之比为
2
,过抛物线C1的焦点F作倾斜角为
π
4
的直线l,交椭圆C于一点P(点P在x轴上方),交抛物线C1于一点Q(点Q在x轴下方).
(Ⅰ)求点P和Q的坐标;
(Ⅱ)将点Q沿直线l向上移动到点Q′,使|QQ′|=4a,求过P和Q′且中心在原点,对称轴是坐标轴的双曲线的方程;
(Ⅲ)设点A(t,0)(常数t>4),当a在闭区间〔1,2〕内变化时,求△APQ面积的最大值,并求相应a的值.

查看答案和解析>>

同步练习册答案