精英家教网 > 高中数学 > 题目详情

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

利润

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测月和月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过万?

相关公式: ,

【答案】(1);(2)月的利润为万,月的利润为万;(3)月份.

【解析】

试题分析:(1)根据平均数和最小二乘法的公式,求解,求出,即可求解回归方程;(2)把分别代入,回归直线方程,即可求解;(3)令,即可求解的值,得出结果.

试题解析:(1)利润关于月份的线性回归方程 .

(2)当时,,故可预测月的利润为万. 时,, 故可预测月的利润为万.

(3)由,故公司2016年从月份开始利润超过万.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中为自然对数的底数

1讨论的单调性;

2证明:当时,

3确定的所有可能取值,使得区间内恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆)的右焦点为右顶点为已知其中为坐标原点为椭圆的离心率

(1)求椭圆的方程;

(2)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点轴交于点求直线的斜率的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产AB两种产品,生产1A种产品需要煤4吨、电18千瓦;生产1B种产品需要煤1吨、电15千瓦现因条件限制,该企业仅有煤10并且供电局只能供电66千瓦,若生产1A种产品的利润为10000元;生产1B种产品的利润是5000元,试问该企业如何安排生产,才能获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

I若函数在点处的切线方程为,求的值;

II若在区间上,函数的图象恒在直线下方,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:

天数

1

1

1

2

2

1

2

用水量/吨

22

38

40

41

44

50

95

(Ⅰ)在这10天中,该公司用水量的平均数是多少?每天用水量的中位数是多少?

(Ⅱ)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,求函数的单调区间;

2是否存在实数,使恒成立,若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆的参数方程为为参数,在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.

1求圆的普通方程和直线的直角坐标方程;

2设直线轴,轴分别交于两点,点是圆上任一点,求两点的极坐标和面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是公差为3的等差数列,数列{bn}是b1=1的等比数列,且.

分别求数列{an},{bn}的通项公式;

令cn= an bn,求数列{cn}的前n项和Tn.

查看答案和解析>>

同步练习册答案