精英家教网 > 高中数学 > 题目详情

已知函数为实数)有极值,且在处的切线与直线平行.
(Ⅰ)求实数a的取值范围;
(Ⅱ)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(Ⅲ)设函数试判断函数上的符号,并证明:
).

(Ⅰ);(Ⅱ) (Ⅲ)见解析.

解析试题分析:(Ⅰ)由已知在处的切线与直线平行,得有两个不等实根,从而得出的范围;(Ⅱ)先由导函数得出函数的单调性,确定函数的极小值点,然后由函数的极小值为1得出存在的值;(Ⅲ)先确定的单调性,上是增函数,故,构造,分别取的值为1、2、3、 、累加即可得证.
试题解析:(Ⅰ)
  由题意
          ①        (1分)

    ②
由①、②可得,
故实数a的取值范围是         (3分)
(Ⅱ)存在               (5分)
由(1)可知
,且








+
0

0
+

单调增
极大值
单调减
极小值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数上为增函数,且
(1)求的值;
(2)当时,求函数的单调区间和极值;
(3)若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)讨论函数的单调性;
(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数若函数在x = 0处取得极值.
(1) 求实数的值;
(2) 若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数的取值范围;
(3) 证明:对任意的自然数n,有恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数.
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)若函数对任意满足,求证:当时,
(Ⅲ)若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数为奇函数,求a的值;
(2)若,直线都不是曲线的切线,求k的取值范围;
(3)若,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数在点处的切线方程为,求的值;
(2)若,函数在区间内有唯一零点,求的取值范围;
(3)若对任意的,均有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且.
(1)求函数的表达式;
(2)当时,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,求的单调区间;
(2)当,且时,求在区间上的最大值.

查看答案和解析>>

同步练习册答案