精英家教网 > 高中数学 > 题目详情

【题目】如图(1)在等腰直角中,斜边的中点,将沿折叠得到如图(2)所示的三棱锥.若三棱锥的外接球的半径为3,则的余弦值______.

【答案】

【解析】

根据题意,先找到球心的位置,再由球的半径是3,以及已有的边的长度和角度关系,分析即得的值,进而可得它的余弦值。

由题,球是三棱锥的外接球,设其半径为R,球心O到各顶点的距离相等,如图,平面,取CD中点E的中点G,连接CGDG平面B关于平面CDG对称,在平面CDG内,作线段CD的垂直平分线,则球心O在线段CD的垂直平分线上,设为图中的O点位置,过O作直线CD的平行线,交平面于点F,则平面,且OF=DE=1在平面内,,即是直角三角形,且斜边,在中,有,即,解得.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知非空集合是由一些函数组成,满足如下性质:对任意均存在反函数,且对任意,方程均有解;对任意,若函数为定义在上的一次函数,则.

1)若,均在集合中,求证:函数

2)若函数)在集合中,求实数的取值范围;

3)若集合中的函数均为定义在上的一次函数,求证:存在一个实数,使得对一切,均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间直角坐标系O-xyz中,已知正四棱锥PABCD的高OP2,点BDCA分别在x轴和y轴上,且AB ,点M是棱PC的中点.

1)求直线AM与平面PAB所成角的正弦值;

2)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两点分别在函数的图像上,且关于直线对称,则称的一对“伴点”(视为相同的一对).已知,若存在两对“伴点”,则实数的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C)的焦点F到准线l的距离为2,直线过点F且与抛物线交于MN两点,直线过坐标原点O及点M且与l交于点P,点Q在线段.

(1)求直线的斜率;

(2)若成等差数列,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)当时,若函数的两个极值点分别为,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)当时,若函数的两个极值点分别为,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有下列四个结论,其中所有正确结论的编号是___________.

①若,则的最大值为

②若是等差数列的前项,则

③“”的一个必要不充分条件是“”;

④“”的否定为“”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)求的单调区间;

(2)讨论零点的个数;

(3)当时,设恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案