精英家教网 > 高中数学 > 题目详情

【题目】如图,点为圆上一动点,过点分别作轴,轴的垂线,垂足分别为,连接延长至点,使得,点的轨迹记为曲线.

(1)求曲线的方程;

(2)若点分别位于轴与轴的正半轴上,直线与曲线相交于两点,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.

【答案】(1)(2)这样的直线不存在.详见解析

【解析】

(1)设,则,且,通过,转化求解即可.

(2)设Mx1y1),Nx2y2),由题意知直线的斜率存在且不为零,设直线的方程为,代入椭圆方程整理得关于x的一元二次方程,假设存在点Q,满足题意,则其充要条件为,则点Q的坐标为(x1+x2y1+y2).由此利用韦达定理结合点Q在曲线上,得到关于k的方程求解即可.

(1)设

由题意知,所以中点,

由中点坐标公式得

又点在圆上,故满足

.

(2)由题意知直线的斜率存在且不为零,

设直线的方程为

因为,故,即 ①,

联立

消去得:

因为为平行四边形,故

在椭圆上,故,整理得,②,

将①代入②,得,该方程无解,

故这样的直线不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在梯形CDEF中,四边形ABCD为正方形,且,将沿着线段AD折起,同时将沿着线段BC折起,使得EF两点重合为点P

求证:平面平面ABCD

求直线PB与平面PCD的所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:

①3小时以内(3小时)为健康时间,玩家在这段时间内获得的累积经验值单位:与游玩时间小时)满足关系式:

②35小时(5小时)为疲劳时间,玩家在这段时间内获得的经验值为即累积经验值不变);

超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.

时,写出累积经验值E与游玩时间t的函数关系式,并求出游玩6小时的累积经验值;

该游戏厂商把累积经验值E与游玩时间t的比值称为“玩家愉悦指数”,记作;若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)讨论的单调区间;

(2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是由非负整数组成的无穷数列,对每一个正整数,该数列前项的最大值记为,第项之后各项的最小值记为,记

(1)若数列的通项公式为,求数列的通项公式;

(2)证明:“数列单调递增”是“”的充要条件;

(3)若对任意恒成立,证明:数列的通项公式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,的中点,将沿直线翻折成,连结的中点,则在翻折过程中,下列说法中所有正确的序号是_______.

①存在某个位置,使得

②翻折过程中,的长是定值;

③若,则

④若,当三棱锥的体积最大时,三棱锥的外接球的表面积是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线上一点,经过点的直线与抛物线交于两点(不同于点),直线分别交直线于点.

1)求抛物线方程及其焦点坐标;

2)求证:以为直径的圆恰好经过原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱台中,底面是菱形,底面,且是棱的中点.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,且时,有,则不等式的解集为____

查看答案和解析>>

同步练习册答案