精英家教网 > 高中数学 > 题目详情
9.下列函数中,是奇函数且在定义域内单调递减的函数是(  )
A.$y={log_{\frac{1}{2}}}x$B.$y=\frac{1}{x}$C.y=-tanxD.y=-x3

分析 根据对数函数的定义域,反比例函数和正切函数的单调性,奇函数及减函数的定义即可判断每个选项的正误,从而找出正确选项.

解答 解:A.对数函数$y=lo{g}_{\frac{1}{2}}x$的定义域为(0,+∞),不是奇函数,∴该选项错误;
B.反比例函数$y=\frac{1}{x}$在定义域内没有单调性,∴该选项错误;
C.y=-tanx在定义域内没有单调性,∴该选项错误;
D.y=-x3为奇函数,且在定义域内单调递减,∴该选项正确.
故选D.

点评 考查对数函数的定义域,奇函数定义域的特点,反比例和正切函数的单调性,以及减函数的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,CC1=2,点P是侧棱C1C的中点.
(1)求证:A1P⊥平面PBD;
(2)求平面A1BP与平面CDD1C1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2sin(A-$\frac{π}{3}})$)=$\sqrt{3}$,sin(B-C)=4cosBsinC,则$\frac{b}{c}$=$1+\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知直线3x-2y-3=0和x+my+1=0互相平行,则它们之间的距离是(  )
A.4B.$\frac{{6\sqrt{13}}}{13}$C.$\frac{{4\sqrt{13}}}{13}$D.$\frac{{2\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且cosA=$\frac{3}{5}$.
(1)求cos($\frac{π}{4}-A}$)的值;
(2)若△ABC的面积S=12,b=6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=loga$\frac{1-x}{b+x}$(0<a<1)为奇函数,当x∈(-1,a]时,函数f(x)的值域是(-∞,1],则实数a+b的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么互斥而不对立的两个事件是(  )
A.至少有1名男生和至少有1名女生B.恰有1名男生和恰有2名男生
C.至少有1名男生和都是女生D.至多有1名男生和都是女生

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线的变化情况来决定买入或卖出股票.股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系xOy,则股价y(元)和时间x的关系在ABC段可近似地用解析式y=asin(ωx+φ)+b(0<φ<π)来描述,从C点走到今天的D点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D点和C点正好关于直线l:x=34对称.老张预计这只股票未来的走势如图中虚线所示,这里DE段与ABC段关于直线l对称,EF段是股价延续DE段的趋势(规律)走到这波上升行情的最高点F.现在老张决定取点A(0,22),点B(12,19),点D(44,16)来确定解析式中的常数a,b,ω,φ,并且求得ω=$\frac{π}{72}$
(1)请你帮老张算出a,b,φ,并回答股价什么时候见顶(即求F点的横坐标)
(2)老张如能在今天以D点处的价格买入该股票3000股,到见顶处F点的价格全部卖出,不计其它费用,这次操作他能赚多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“m=1”是“直线mx+y-2=0与直线x+my+1-m=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案